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Abstract

Mycobacterium abscessus is a nontuberculosis mycobacterium (NTM) that has shown an

exponential rise in its ability to cause disease. Due to its ubiquitous presence in the environ-

ment, M. abscessus is widely implicated in secondary exacerbations of many nosocomial

infections and genetic respiratory disorders, such as cystic fibrosis (CF). Contrary to other

rapidly growing NTMs, the cell envelope of M. abscessus harbors several prominent fea-

tures and undergoes modifications that are responsible for its pathogenesis. Compositional

changes of the mycobacterial outer membrane (MOM) significantly decrease the presence

of glycopeptidolipids (GPLs) and enable the transition from a colonizing, smooth morpho-

type into a virulent, rough morphotype. The GPLs are transported to the MOM by the Myco-

bacterial membrane proteins Large (MmpL), which further act as drug efflux pumps and

confer antibiotic resistance. Lastly, M. abscessus possesses 2 type VII secretion systems

(T7SS): ESX-3 and ESX-4, both of which have recently been implicated in host–pathogen

interactions and virulence. This review summarizes the current knowledge of M. abscessus

pathogenesis and highlights the clinically relevant association between the structure and

functions of its cell envelope.

Introduction

Mycobacterium abscessus is an emerging pathogen that has changed the narrative for rapidly

growing nontuberculosis mycobacteria (NTMs) [1–3]. Rapidly growing NTMs do not typically

have pathogenic features (i.e., the ability to cause disease); however, M. abscessus can cause dis-

eased states that, in many ways, resemble those of M. tuberculosis [4–6]. Classified as a Bio-

safety Level 2 pathogen, it is the causative agent of various nosocomial and mucocutaneous

infections. In humans, M. abscessus mainly colonizes epithelial cells but can also infect macro-

phages and neutrophils. Though no specific environmental reservoir has been identified, M.

abscessus can survive and proliferate successfully in amoeba [5,7]. Its exceptional multidrug

resistance and ubiquitous environmental presence make it a persistent pathogen that is diffi-

cult to treat with standard antibiotics, especially in patients with respiratory disorders and

compromised immune systems [8]. Due to increased infectivity of people with underlying pul-

monary disorders, M. abscessus plays a significant role in exacerbating life-threatening genetic

disorders including bronchiectasis, chronic obstructive pulmonary disease (COPD), and cystic

fibrosis (CF) [8]. Over the years, secondary infections caused by M. abscessus have surpassed
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those of common CF-associated pathogens such as Pseudomonas aeruginosa and Burkholderia
cepacia [2,9], making it an important pathogen to consider during disease progression and

treatment. In addition to the lungs, M. abscessus can infect other major organs, including eyes,

brain, and skin [1]. Its pervasive nature makes it a fairly common NTM among various skin

and soft tissue infections. These infections can spread directly through contaminated water,

surgical tools, and other shared materials. Surgical wounds, communal spas and hot tubs, and

cosmetic procedures are also common routes for the spread of M. abscessus skin infections,

which include various skin lesions, erythematous nodules, abscesses and sinuses, erythematous

papules, and others [1,10]. Ocular M. abscessus infections mainly cause scleritis, keratitis, and

endophthalmitis [11]. A relatively uncommon occurrence of M. abscessus infection is in the

central nervous system (CNS) wherein studies in zebrafish embryo have shown specific neuro-

tropism of M. abscessus [12]. In humans, once acquired, it can lead to cerebral abscesses and

meningitis; these effects are more prevalent in immunocompromised patients like those with

HIV or undergoing chemotherapy [13].

The cell envelope of mycobacteria is their main distinguishing feature that plays an essential

role during pathogenesis. Surface components in M. abscessus that have not been collectively

observed in any other rapid- or slow-growing mycobacterium include distinct surface lipids,

drug efflux pumps, and secretion systems. The interplay among all of these components deter-

mines cell envelope integrity and function. This review highlights important surface compo-

nents of M. abscessus and summarizes their clinical role in the context of CF.

I. Cell envelope modifications

Unlike typical cell envelope architectures of gram-positive (monoderm) and gram-negative

(diderm) bacteria, the mycobacterial cell envelope has distinct features and composition

[14,15]. Mycobacteria belong to the phylum Actinobacteria, typically characterized as mono-

derm with high guanine and cytosine content in their DNA [16]. Conversely, in addition to

their inner/cytoplasmic membrane (CM) and peptidoglycan (PG), Mycobacteria have a

unique mycolic acid outer membrane (MOM) and an arabinogalactan layer (Fig 1) [15]. Mod-

ifications and up-regulation of clinically important lipid components of the MOM such as gly-

copeptidolipids (GPLs), trehalose-6,6-dimycolate (TDM), trehalose monomycolate (TMM),

trehalose polyphleates (TPPs), and phosphatidyl-myo-inositol dimannoside (PIM) have been

documented during pathogenesis [14,17].

Modifications in the cell envelope of M. abscessus results in the formation of 2 distinct col-

ony morphotypes: rough and smooth (Fig 2) [18–20]. These morphotypes have unique proper-

ties affecting bacterial adhesion and host interactions in vivo and in vitro: The smooth

morphotype is considered noninvasive, whereas the rough morphotype is virulent and associ-

ated with disease progression [19,21]. During infection of host cells, M. abscessus can transi-

tion from smooth into a rough morphotype by modulating GPL levels on its MOM [5,18,19].

The presence of GPLs on the surface of smooth variants makes them less hydrophobic, which

is thought to promote sliding motility on agar, as well as induce host colonization upon infec-

tion [5,19,22]. The smooth variants also form smaller clumps, which are readily engulfed and

lead to faster fusion with lysosomes [5]. The lack of GPLs in rough variants, on the other hand,

induces aggregation and cording [12], making it difficult for immune cells to engulf the bacte-

ria and contain the infection [5,6].

Mycobacterial membrane proteins large/small (MmpL/MmpS) and other accessory pro-

teins, such as GPL-addressing proteins (GAPs), form transport assemblies across the CM. Dys-

function in any of these membrane proteins results in defective lipid transport to the cell

surface and altered cell morphotype. For example, M. abscessus strains with irreversible
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mutations in the genes of mycobacterial nonribosomal peptide synthetases (responsible for

GPL synthesis) and deletion of the MmpL4 genes mmpl4a or mmpl4b (responsible for GPL

transport) have led to lack of GPLs and resulted in transition into rough morphotypes [23–25].

This is also accompanied by decreased surface colonization of host epithelial cells, increased

proliferation in macrophages, and enhanced innate immune responses, all properties associ-

ated with the rough morphotype [23,25,26]. MmpL8 is another important protein in this

group that is involved in the synthesis of a previously undefined glycolipid glycosyl diacylated

nonadecyl diol (GDND), as well as in the interaction with phagocytic host cells [27]. This

Fig 2. Colony morphotypes in M. abscessus. (A) Smooth colony morphotype, exemplified by the round colony edges,

and (B) rough colony morphotype, characterized by the irregular edges and flat surface. Freezer stocks of M. abscessus
ATCC 19977 were first used to inoculate liquid Middlebrook 7H9 media supplemented with 0.05% Tween-80, 0.2%

glycerol, and OADC and grown at 37˚C until mid-log phase (OD600 of 0.6–0.7). Cultures were then plated on

Middlebrook 7H10 solid media supplemented with 0.2% glycerol and OADC for 5–7 days at 37˚C. Scale bar, 3 mm.

https://doi.org/10.1371/journal.ppat.1011318.g002

Fig 1. The major components of the M. abscessus cell envelope. The MOM displays morphologically and immunologically important lipid moieties

such as GPLs, TDMs, TMMs, PIMs and TPPs. The CM displays membrane embedded protein assemblies that are essential for the transport of these

lipids as well as for the release of virulence factors. These include 3 major complexes: (1) MmpL4-MmpS-GAP, which aid in the transport of GPLs to

the outer surface of M. abscessus and regulate the smooth to rough morphotype transition; (2) MmpLs, implicated in drug efflux mechanisms; and (3)

ESX-3 and ESX-4, implicated in infecting host cells through the release of the effector molecules EsxG/H and EsxT/U, respectively. CM, cytoplasmic

membrane; GPL, glycopeptidolipid; MmpL, Mycobacterial membrane proteins Large; MOM, mycolic acid outer membrane; PIM, phosphatidyl-myo-

inositol dimannoside; TDM, trehalose-6,6-dimycolate; TMM, trehalose monomycolate; TPP, trehalose polyphleate.

https://doi.org/10.1371/journal.ppat.1011318.g001
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glycolipid is unique to M. abscessus and may have a specific role in infection, especially under

the regulation of MmpL8 [27]. Thus, the cell envelope composition drives the initial stages of

infection such as surface attachment (by the smooth variant) and intracellular survival and

proliferation (by the rough variant).

Imaging studies of bone marrow–derived murine macrophages infected with the smooth

variant of M. abscessus revealed a clear zone between the bacterial surface and the phagosome

membrane and prevented phagosome maturation and acidification [5]. The rough variants, on

the other hand, formed distinct contacts with the phagosome membrane and, in addition, were

able to actively replicate inside the phagosomes, eventually causing rupture and cell-to-cell

spread of the bacteria [5,28]. Though it remains unclear when the transition from smooth to

rough occurs during infection, the loss of GPLs reveals underlying immune-stimulatory mole-

cules that trigger an immune response by the host. For example, PIM2 and lipoproteins

exposed on the surface of M. abscessus were shown to activate the Toll-like receptor-2 (TLR-2),

leading to an increase in tumor necrosis factor-alpha (TNF-α)-mediated inflammation [29,30].

Similar to M. tuberculosis, other virulence-associated glycolipids such as TDMs are also

expressed on the surface of M. abscessus and, together with TPPs, are responsible for cording of

the rough variant during granuloma formation [31–33]. Recently, in a zebrafish infection

model, the rough morphotype caused inflammation by modulating host TNF-α signaling, lead-

ing to necrotic granuloma formation that was comparatively less accelerated in smooth mor-

photypes [34]. Knock-out mutants of TNF signaling genes (tnfa, tnfr1, and tnfr2) reduced the

burden of the rough morphotype but increased the proliferation of the smooth morphotype

during infection [34]. Overall, the smooth and rough variants show different intra- and extra-

cellular lifestyles, both of which are needed for bacterial survival and invasion of host cells.

II. Cell envelope–mediated antibiotic resistance

Several features of the mycobacterial cell envelope confer intrinsic resistance to most antibiot-

ics: GPLs in the MOM, biofilm formation, and drug efflux pumps. As discussed above, the lack

of GPLs results in enhanced hydrophobicity of the MOM in rough variants. Since β-lactams,

as well as the anti-TB drugs INH, EMB, and streptomycin, are hydrophilic, the susceptibility to

these therapeutic agents is extremely low. Furthermore, GPLs are associated with inducing

biofilm formation, where the extracellular matrix acts as a physical barrier and protects bacte-

ria from antibiotics such as clarithromycin and amikacin [35,36]. A study of patients with

COPD identified the presence of smooth and rough variants in biofilms [37,38]. Since the

smooth morphotype is rich in GPLs, the presence of the rough morphotype in the biofilm

could act as a virulence factor that promotes invasive growth.

Along with cell wall impermeability, active efflux pumps provide resistance by expelling

drug molecules that enter the cell [39,40]. Several mycobacterial drug efflux pumps have been

identified, including the MmpLs [41]. As such, these proteins belong to a subclass of the Resis-

tance-Nodulation-Cell Division (RND) permeases, and mmpL gene orthologs have been char-

acterized for their role in drug efflux and antibiotic resistance in M. tuberculosis [42,43].

Moreover, M. abscessus expresses a greater abundance of MmpL proteins compared to most

known rapidly growing NTMs, which may explain their higher antibiotic resistance [44]. For

example, the TetR transcriptional regulator MAB_2299c controls genes encoding for the

MmpS-MmpL efflux pump and mutations in these genes decrease the resistance of M. absces-
sus to clofazimine and bedaquiline [40,45,46]. Lastly, a recent study showed that the GPL-

defective mutants of rough morphotype had similar antibiotic susceptibility as the smooth

wild-type M. abscessus, suggesting the involvement of additional factors contributing to resis-

tance during chronic infections [47].
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III. Secretion systems in M. abscessus
Specialized bacterial secretion systems (type I to type IX) have been recognized as membrane-

associated nanomachines that aid in transporting molecules in and out of cells. They promote

pathogenesis by secreting virulence factors (substrates) that are required for intracellular sur-

vival and for evading the bactericidal mechanisms of the host cell [48]. The type VII secretion

system (T7SS) was discovered in M. tuberculosis and is the major secretion system in mycobac-

teria [49–51]. There are 5 subtypes of the T7SS known as ESX-1 to ESX-5 [50,51]. Among

these, ESX-1, 3, and 5 have been widely studied for their role in mycobacterial survival and

pathogenesis [50,52], while limited data are available on the structure and function of ESX-2

and ESX-4. More specifically, ESX-1, with the largest gene locus, supports bacterial survival

inside the host, promotes phagosome rupture, and triggers dissemination of mycobacteria

through host cell lysis [53,54]. ESX-3 is mainly involved in iron and zinc acquisition and mod-

ulation of host cell immunity [55,56]. The ESX-5 secretion system is specific to slow-growing

mycobacteria, and, similar to ESX-3, it plays a part in nutrient uptake and immunomodulation

[57,58].

Some pathogenic strains of mycobacteria such as M. tuberculosis have all 5 ESX secretion

systems, whereas M. abscessus possesses only ESX-3 and ESX-4 (Fig 3) [59]. The core complex

Fig 3. Gene clusters for ESX-3 and ESX-4 in M. abscessus compared to M. tuberculosis. Both ESX-3 and ESX-4 encode for major structural

components as well as secreted substrates. The genes eccB, eccC, eccD, eccE, and mycP encode for proteins that make up the intact machinery of the ESX

systems. ESX substrate molecules include PE5-PPE4, EsxG, and EsxH for ESX-3, and EsxT and EsxU for ESX-4.

https://doi.org/10.1371/journal.ppat.1011318.g003
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of all subtypes is thought to be conserved and structural studies of ESX-5 from M. tuberculosis
revealed that it spans the CM and is formed by EccB, EccC, EccD, EccE, and MycP (Fig 4)

[60,61]. Briefly, EccB anchors the system within the periplasmic space, EccC encodes for mem-

brane-anchored FtsK–SpoIIIE family ATPase, EccD likely forms a membrane channel, EccE is

a membrane and cell wall associated protein, and MycP is a membrane-anchored serine prote-

ase. In addition, a cytosolic ATPase, EccA, is required for specific substrate secretion and is

recruited to the ESX secretion machinery upon substrate binding [50,62,63]. The known sub-

strates of these ESX systems are broadly divided into 3 types: Esx group that belong to the

WXG-100 protein family (e.g., EsxA, EsxB, EsxT, and EsxU); Esp or the ESX-1 secretion-asso-

ciated proteins (e.g., EspA, B, and C); and the PE-PPE group, which are proteins that have

characteristic N-terminal motifs of Pro-Glu and Pro-Pro-Glu (e.g., PE4–PPE5) [50,51]. Upon

secretion, these substrates carry out specific functions that aid in bacterial survival and mediate

virulence in host cells.

ESX-4 and its substrates in M. abscessus. In most mycobacteria, the esx-4 cluster lacks

the gene for EccE resulting in architectural instability and functionally incapacitated ESX-4

[64]. However, the esx-4 gene cluster in M. abscessus encodes for the missing EccE4 core com-

plex protein and is essential for survival inside macrophages and amoebae (Fig 3) [4]. Another

crucial core component gene is the eccB4 that affects intracellular survival and modifies the

phagosome environment, causing phagosome rupture inside host cells [4]. The effects of ESX-

4 are known to be substrate dependent since deletion of ESX-4 core complex genes results in

lower expression of EsxU and EsxT (ESX-4 substrates) as well as PE-PPE proteins (ESX-3 sub-

strates) [4]. In line with these findings, a recent study shows that EsxU and EsxT from M.

abscessus form a heterodimer involved in phagosome membrane damage of macrophages

[65]. Therefore, the EsxU/EsxT pair is crucial for inducing membrane permeability, which is

advantageous during early stages of bacterial infection. However, when tested in vivo in zebra-

fish and mice, knockout mutants of EsxU/EsxT induced hypervirulence via increased bacterial

growth and granuloma/abscess formation [65]. These findings from 2 different experimental

settings imply that the ESX-4 substrates may be essential during the initial stages of infection

and down-regulated subsequently to induce hypervirulence and spread of the infection. Since

Fig 4. Single-particle cryo-EM structure of the core complex of ESX-5 from M. tuberculosis. The core complex is

composed of EccB, EccC, EccD, EccE, and MycP and spans the CM. Top and bottom views of the complex reveal the

multimeric nature of the complex with its dimensions.

https://doi.org/10.1371/journal.ppat.1011318.g004
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ESX-4 induces pathogenicity in M. abscessus in a manner similar to ESX-1 in M. tuberculosis,
it may act analogously to the ESX-1.

ESX-3 and its substrates in M. abscessus. The ESX-3 secretion system is the most con-

served among all T7SSs. The functional and structural characteristics of ESX-3 have been

widely studied in M. tuberculosis, revealing a role in maintaining intracellular survival in mac-

rophages, delaying phagolysosome fusion, and acquiring bacterial nutrients during macro-

phage infection [50]. The genes for ESX-3 are expressed in response to iron limitation and

maintain metal homeostasis in mycobacteria [66–68]. Along with the main core components

of ESX-3, the operon encodes for various ESX-3 substrates including the EsxG, EsxH along

with PE5-PPE4 proteins (Fig 3). EsxH, in particular, plays a key role in M. tuberculosis patho-

genicity by impeding the hepatocyte growth factor receptor substrate (HRS) component of the

human endosomal sorting complex required for transport (ESCRT) pathway, which is essen-

tial for endomembrane repair [55,56,69]. In M. tuberculosis, the presence of both iron and zinc

strongly represses esx-3 expression, leading to lower secretion of EsxG and EsxH, and ulti-

mately diminishing intracellular survival in macrophages [68]. EsxG and EsxH also interfere

with lysosomal trafficking and phagosome maturation [55,56,69]. The secretion of these 2 pro-

teins directly correlates with intracellular growth and bacterial virulence, and mutants lacking

these substrates are highly attenuated for growth in human macrophages [70]. Furthermore,

expression of recombinant ESX-3 substrates PE5 and PE15 in M. tuberculosis and M. smegma-
tis has been shown to improved intracellular survival and alter the innate immune responses

by reducing transcription levels of pro-inflammatory cytokine IL-12 and up-regulating the lev-

els of the anti-inflammatory cytokines IL-10, IL-4, IL-5, and TGF-β [70].

Similar to M. tuberculosis, the ESX-3 of M. abscessus has been shown experimentally to play

a role in pathogenesis of mice [71]. Mutations in the genes for EsxG and EsxH induce less sys-

temic and local inflammatory responses compared to wild-type bacteria during infection [71].

In M. abscessus, ESX-3 induces pro-inflammatory cytokines like TNF-α, IL-6, IL-1β, and IL-

12p40 in murine and human macrophages and is associated with activation of mitogen-acti-

vated protein kinase (MAPK) as well as NF-κB signaling after infection [71]. Deletion mutants

of the ESX-3 result in decreased production of inflammatory cytokines, lowered levels of cyclo-

oxygenase 2 (COX-2) and nitric oxide synthase (iNOS), and reduced neutrophil recruitment

to lung tissues [71]. Although the prospects of ESX-3–mediated pathogenic functions in M.

abscessus are intriguing, more studies are required.

IV. Interplay between major cell envelope components in M. abscessus
Cell envelope dynamics affect membrane morphology and have functional implications for M.

abscessus pathophysiology. It is therefore important to consider interactions between various

cell envelope components. For example, the transition from smooth to rough morphotype

allows M. abscessus to evade the host’s immune system. On the other hand, the ESX systems

induce pathogenicity by secreting effector molecules. In order to cross the thick cell envelope,

changes in the lipid and protein composition of the CM and MOM are required. This raises

the question of whether the change from the smooth to rough morphotype affects the expres-

sion and function of the ESX secretion systems. Since the transport of membrane lipids is

dependent on CM proteins such as MmpLs, their expression may also affect the synthesis of

ESX-3 and ESX-4. Since the function of ESX-3 and ESX-4 is not well characterized, it is also

possible that effector substrates alter the expression and/or transport of MOM lipids through

the MmpL protein complexes in order to promote their own secretion. Association between

different cell envelope components was presented in M. marinum and M. tuberculosis wherein

ESX-1 acts in concert with the membrane lipid PDIM during phagosomal damage [54,72]. In
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context to the similarity between ESX-1 and ESX-4, it was also suggested that ESX-4 may have

a similar combined effect with other membrane assemblies like the MmpL8 that transports

GDND in order to mediate its effects inside the host cell [51].

In addition to their role during pathogenesis, secretion systems have been shown to affect

membrane properties such as capsule integrity, hydrophobicity, and biofilm formation. In

slow-growing mycobacteria, the ESX-5 system is involved in maintaining capsule integrity and

surface hydrophobicity through the secretion of PPE-10 substrate [73]. Studies on the ESX-5

system in M. marinum lacking the MOM porin MspA have demonstrated impaired bacterial

growth, suggesting a link between ESX-5 and membrane permeability [57]. Deletion of the

ESX-1 substrates in M. marinum causes attenuation of biofilm formation and sliding motility

[74], and impaired ESX-3 in M. marinum results in decreased permeability, abnormal colony

morphology, and reduced biofilm formation [75]. Since M. abscessus encodes for ESX-3 and

ESX-4 only, understanding how these 2 secretion systems coordinate their activity to compen-

sate for the lack of ESX-1 and ESX-5 is of major significance.

V. Clinical implications of M. abscessus in CF

The distinct cell envelope profile of M. abscessus makes it a highly potent infectious agent in

many mucocutaneous disorders. Along with a high level of resistance to multiple antibiotics,

M. abscessus is also resistant to most disinfectants and, hence, responsible for various post-

surgical infections [1,76]. The nature of infection is generally progressive, but a fulminant

course has also been observed, especially in acute respiratory disorders [76,77]. Overall,

M. abscessus is proving to be one of the most worrisome NTMs prevalent in present times

[2,78,79].

CF is an autosomal recessive disorder with a dysfunctional CF transmembrane conductance

regulator (CFTR) protein, mainly affecting the respiratory tract. This life-threatening disorder

is globally prevalent with a high incidence rate among white populations, especially in children

[80]. M. abscessus has emerged as a major pathogen in CF patients, leading to further deterio-

ration of lung function [2]. A defective CFTR protein affects chloride and sodium ion levels

inside airway epithelial cells, lowering the water content in the mucus and impairing proper

airway secretion. The thicker mucus leads to inefficient mucociliary clearance and renders the

airway epithelium a favorable environment for bacterial colonization [79].

Membrane dynamics between smooth and rough morphotypes has been proposed as the

link between CFTR dysfunction and increased susceptibility to M. abscessus [81,82]. The

smooth morphotype colonizes the airway epithelium and the transition into the rough mor-

photype induces virulence in CF patients [83,84]. The smooth variant is predominant during

the initial phases of infection when its GPL-abundant MOM permits evasion of the host’s

immune system by masking the bacterial cell surface from immune instigative molecules such

as TLR-2 [85]. This masking prevents downstream signaling via IL-8 and the recruitment of

neutrophils [85]. Once inside the host, the invasive role of the rough variants is dominated by

their cord-forming ability as shown in the CF model organism zebrafish [86]. In support of

this model, rough variants are routinely isolated from samples of chronically ill patients

[19,87,88]. Even though CF is a genetic disorder, it does provide a conducive environment for

pathogens, which need to be treated with antibiotics. In addition to the hydrophobic MOM

and MmpLs efflux pumps discussed here, M. abscessus has an unusually high resistance to

most antibiotics due to various antibiotic-modifying enzymes [89]. As a result, the inability to

treat this infection promotes chronic disease [40,90]. Furthermore, the properties of M. absces-
sus biofilms (such as viscoelasticity and stiffness) are comparatively higher than most other

pathogenic bacteria and are suggested to hinder airway clearance [91].

PLOS PATHOGENS

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1011318 May 18, 2023 8 / 14

https://doi.org/10.1371/journal.ppat.1011318


Even though defective CFTR mainly affects alveolar epithelial cells, some ESX-3– and ESX-

4–associated cellular changes have also been identified in macrophages [92] (Fig 5). For exam-

ple, ESX-4 was shown to cause phagosome damage and promote intracellular survival by

reducing phagosome acidification [4]. Similarly, one of the effects of a dysfunctional CFTR

protein is also the impairment of phagosome acidification [81,82], a process that may be fur-

ther amplified by the ESX-4. Generally, a defective CFTR leads to high inflammatory responses

that progressively deteriorate lung function. This pathophysiology of increased oxidative stress

and neutrophil response is also observed in zebrafish with a dysfunctional CFTR protein [93].

When zebrafish with a dysfunctional CFTR were infected with M. abscessus, lower ROS pro-

duction was observed, which led to impaired neutrophil chemotaxis, ultimately protecting the

bacteria [81,82,94]. The role of ESX-3 during CF is still under investigation.

Concluding remarks

The wide range of pathogenic factors in M. abscessus gives this organism an unprecedented

capacity to elicit a range of infection patterns. More importantly, most of these pathogenic fac-

tors revolve around the cell envelope structure and composition of the bacterium. The flexibil-

ity to transform into a more virulent morphotype aids in deceiving the host’s immune system

and enables systemic spread. A unique MOM and numerous efflux pumps form a strong bar-

rier against the host’s immune system as well as a wide range of antibiotics. Furthermore, the

presence of a distinct ESX-4 provides M. abscessus with armaments to modulate the host

immune system, allowing for a more aggressive progression of the infection. Many of these

features remain obscured and require further studies to develop a better understanding of the

infection mechanisms employed by this organism.

Fig 5. Proposed effects of ESX-3 and ESX-4 in M. abscessus on CFTR-defective phagocytes. M. abscessus as an NTM known to exacerbate

prerespiratory conditions such as CF through mechanism that are not yet well characterized. The effects of ESX-3 and ESX-4 may overlap with the

pathophysiology of a dysfunctional CFTR protein and worsen disease states.

https://doi.org/10.1371/journal.ppat.1011318.g005
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