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ABSTRACT The bacterial flagellar motor is a complex macromolecular machine whose
function and self-assembly present a fascinating puzzle for structural biologists. Here,
we report that in diverse bacterial species, cell lysis leads to loss of the cytoplasmic
switch complex and associated ATPase before other components of the motor. This
loss may be prevented by the formation of a cytoplasmic vesicle around the complex.
These observations suggest a relatively loose association of the switch complex with
the rest of the flagellar machinery.

IMPORTANCE We show in eight different bacterial species (belonging to different
phyla) that the flagellar motor loses its cytoplasmic switch complex upon cell lysis,
while the rest of the flagellum remains attached to the cell body. This suggests an
evolutionary conserved weak interaction between the switch complex and the rest
of the flagellum which is important to understand how the motor evolved. In addi-
tion, this information is crucial for mimicking such nanomachines in the laboratory.

KEYWORDS cell lysis, flagellar motor, cryo-ET, switch complex

The bacterial flagellar motor is a complex nanomachine responsible for cell motility in
a wide range of species. It consists of a cell envelope-embedded motor that rotates

an extracellular filament, connected by a universal joint known as the hook (1). The motor
is composed of a stator consisting of ion channels embedded in the cytoplasmic or inner
membrane (IM) and a rotor consisting of a cytoplasmic switch complex (also called the C-
ring), a membrane/supramembrane (MS)-ring, a periplasmic driveshaft known as the rod,
associated bushings in the peptidoglycan cell wall (the P-ring), and, in diderms, the outer
membrane (the lipopolysaccharide, or L-ring) (1). A flagellar type III secretion system
(fT3SS) is responsible for self-assembly of the machine, which begins with the IM-associ-
ated components and proceeds in a stepwise fashion outward to the extracellular ones
(1). In addition to this conserved core, the flagella of various species can have periplasmic
or extracellular species-specific components that adorn their flagella (2, 3).

The flagellar machinery can also disassemble, as in the programmed ejection of the
flagellum during the life cycle of the alphaproteobacterium Caulobacter crescentus.
This process is thought to be accompanied by the digestion of the C terminus of the
MS-ring protein FliF (4). More recently, flagellar disassembly has been observed in
many species under starvation or mechanical stress. This process starts with loss of
flagellar hooks and filaments and continues with disassembly of motor components,
leaving plugged P- and L-rings in the cell wall and outer membrane (5–11).
Additionally, we have recently shown that programmed flagellar ejection in C. cres-
centus leaves similar plugged P- and L-rings suggesting an evolutionary link between
this process and the starvation-induced one (12).

The complexity of the flagellar motor and its location spanning the cell envelope mean
that it is challenging to purify intact. The development of cryogenic electron tomography
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(cryo-ET), the highest-resolution imaging technique currently applicable to unique biological
objects, has enabled the structure to be studied in situ in a native state inside cells. Over the
past 15years, our laboratory has collected tens of thousands of electron cryotomograms of
dozens of bacterial species (13). This resource includes many examples of lysed cells, col-
lected either accidentally or intentionally. For example, we have found that lysis of
Escherichia coli cells by light penicillin treatment flattens them, making them more suitable
for cryo-ET experiments (14). Similarly, the thick cell wall of Bacillus subtilis renders them a
challenging sample for cryo-ET experiments, so we digested the cell wall of B. subtilis with ly-
sozyme to visualize membrane-embedded structures in protoplasts and cell lysates. While
examining these lysates, we identified a flagellar subcomplex that lacks the C-ring and con-
tains only the MS-ring, the rod, and the hook (occasionally with part of the filament) (Fig. 1A
and B). We identified a total of 71 such particles in 26 cryotomograms, enabling us to calcu-
late a subtomogram average of the structure (Fig. 1C).

Wondering whether C-ring loss after cell lysis is a general phenomenon, we examined
electron cryotomograms of lysed cells from different phyla (Proteobacteria and
Firmicutes) available in our database. Besides the results in B. subtilis, we identified lysed
cells retaining flagellar filaments in E. coli (penicillin treated), Helicobacter hepaticus,
Campylobacter jejuni, Hydrogenovibrio crunogenus, Hylemonella gracilis, Selenomonas sp.
(clinical isolate), and Acetonema longum. In each case, in addition to fully intact flagella
(which have the switch complex), we also observed flagellar filaments and hooks con-
nected to motors lacking the C-ring (Fig. 1D to X). Multiple examples were found in
some species that allowed us to average them (H. hepaticus, 7 examples in 7 lysed cells;
A. longum, 7 examples in 2 lysed cells; Selenomonas sp., 6 examples in 2 lysed cells)

FIG 1 Slices through electron cryotomograms (except panels C, F, I, and L) of intact or lysed cells of various species showing flagella either with the
switch complex (yellow ellipses) or lacking the switch complex (yellow arrows point to the expected position of the absent C-ring). Cyan ellipses indicate
densities belonging to FlhAC. Red boxes in panels N, Q, T, and W indicate regions enlarged in the panel to the right. (C, F, I, and L) Subtomogram averages
(STA) of the subcomplexes shown in panels B, E, H, and K, respectively. Scale bars, 20 nm. IM, inner membrane; OM, outer membrane.
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(Fig. 1F, I, and L). In roughly half of these partially disassembled motors, we observed
densities corresponding to the C terminus of the fT3SS protein FlhA (FlhAC) at the base
of the MS-ring (Fig. 1H, K, O, R, and X, cyan circles).

Less frequently, lysed cells contained a small vesicle of IM encapsulating the cyto-
plasmic components of the flagellar motor (C. jejuni, 2 examples in 2 lysed cells; A.
longum, 4 examples in 4 lysed cells; H. hepaticus, 4 examples in 4 lysed cells; single
examples for the rest). These vesicles were only slightly larger than the switch com-
plex, and, in each case, the C-ring was retained (Fig. 2).

As the cases mentioned above were either from complete cell lysates (as in B. subtilis),
partially lysed cells (E. coli), or cells that were randomly lysed during sample preparation
(the rest of the examples), we investigated this correlation between cell lysis and the loss
of the switch complex by imaging cells that have undergone a more controlled lysis.
To that end, we prepared and imaged Treponema primitia cells, which are spirochetes
with periplasmic flagella, treated with different digestive enzymes: (i) cells incubated
with 5mg/ml lysozyme for 15 min prior to plunge-freezing, (ii) cells incubated with
5mg/ml proteinase K for 15 min prior to plunge freezing, and (iii) undigested cells as
a control group. The cells in groups 1 and 2 lacked an intact outer membrane and
cell wall (Fig. 3). While the 25 motors identified in untreated cells all had C-rings, 6 of the
16 motors present in cells treated with lysozyme lacked the C-ring, and 1 motor out of the
9 motors in cells treated with proteinase K lacked the C-ring (Table 1, Fig. 3), suggesting
again a correlation between cell lysis and C-ring loss.

FIG 2 (A to G) Slices through electron cryotomograms of lysed cells of the indicated species,
highlighting the presence of a flagellum with an intact C-ring (red arrows) encapsulated by an IM
vesicle. Scale bars, 25 nm.
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These results suggest that, upon cell lysis, the C-ring of some motors dissociates
from the MS-ring but is retained if the proteins are encapsulated by a vesicle of cyto-
plasm. It is possible that the higher protease activity in the cytoplasm compared to the
periplasm (15) plays a role in the loss of the cytoplasmic parts of the motor (i.e., the C-
ring and the ATPase), but the preservation of the cytoplasmic FlhAC suggests dissocia-
tion of the C-ring rather than proteolysis. This leads us to conclude that the interaction
between the C- and MS-rings is more labile than interactions between other flagellar
components. This also would explain the absence of the switch complex in early prep-
arations of purified flagella (16, 17). Later studies found that the switch complex can
be retained if flagella are purified under mild conditions of pH and salt (18–21), but

FIG 3 Slices through electron cryotomograms of undigested (A and B), lysozyme-digested (D to G),
or proteinase K-digested (H to K) T. primitia cells. Red boxes in panels A, D, F, H, and J indicate
regions enlarged in the panel to the right. Flagella with or without the switch complex are indicated
by yellow ellipses or yellow arrows (pointing to the expected position of the absent C-ring),
respectively. Scale bars in panels A, D, F, H, and J, 100 nm; in panels B, E, G, I, and K, 50 nm. (C and L)
Subtomogram averages (STA) of an intact flagellar motor (EMD-1235; see reference 31) (C) or a motor
lacking the switch complex present in digested cells (L). Scale bars, 20 nm.

TABLE 1 Number of motors with or without C-ring in digested or untreated T. primitia

Treponema primitia
No. of motors
with C-ring

No. of motors
without C-ring No. unclear

No. of
tomograms

Untreated cells 25 0 0 18
1Lysozyme 8 6 2 13
1Proteinase K 8 1 0 5
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even under mild conditions, the majority of purified flagella lose their C-rings after 20
minutes at room temperature or 80 hours at 4°C (20).

In our case, the lysis conditions were different for the various samples. For example,
B. subtilis was completely lysed with lysozyme prior to plunge-freezing and imaging,
and only cell lysate was present in the cryotomograms, while E. coli was mildly lysed
by incubating the sample with penicillin before plunge-freezing. On the other hand, T.
primitia was mildly lysed with lysozyme and proteinase K. The majority of the observed
particles lacked the C-ring in the lysate of B. subtilis, but only a small proportion of
motors were devoid of the switch complex in mildly lysed E. coli and T. primitia. While
this could be related to the different lysis conditions and how severely the cells are
lysed, we cannot exclude species-specific differences in this process. As for other spe-
cies, the examples we identified were randomly lysed during sample preparation and
we anticipate that the lysis conditions were mild (standard growth media), but we do
not know how long individual cells were lysed before plunge-freezing. Whereas these
results suggest that the loss of the switch complex is more prominent under severe
lysis (like in B. subtilis), further experiments are required to quantify this process in rela-
tion to different lysis conditions (including mechanical stress) in different species.

In the case of partially lysed T. primitia, only the outer membrane and cell wall
appeared damaged, while the cells continued to have an intact inner membrane and
normal cytoplasm, as seen in our cryotomograms. It is known that the stators interact
with the cell wall upon incorporation into the flagellar motor to get activated (22), and
the damage of the cell wall in these cells could interfere with the incorporation of sta-
tors to the motor and their interaction with the switch complex. The loss of C-ring in
these cells could be due to the interruption of this interaction, which would normally
help to stabilize the C-ring in its place.

Previous studies of flagellar loss in intact Vibrio alginolyticus cells suggest that this
process starts with the detachment, not digestion, of the C-ring, which is freed to dif-
fuse along the inner membrane (9), and intact C-rings do not copurify with the motor
in this species (23). Cryo-ET of intact Shewanella oneidensis cells lacking the filament
proteins FlaA and FlaB (DflaAB mutant) also revealed a flagellar subcomplex with the
extracellular hook and periplasmic components but without the cytoplasmic ones (6),
further suggesting that C-ring loss is not limited to cell lysis. It is conceivable that
releasing the C-ring is beneficial to cells in order to save energy when there is no fila-
ment to rotate, as in the S. oneidensis DflaABmutant.

The phenomenon of breaking the bacterial flagellum and leaving stable flagellar
subcomplexes under certain conditions is a recently described one. First, we and
others showed that various bacteria can lose their flagella under starvation, leaving the
P- and L-rings as a stable subcomplex in the outer membrane (5–11). However, how
the motor breaks to leave PL-rings remains unknown. Using fluorescence microscopy,
Zhuang et al. presented a model of the possibility of breaking the bacterial flagellum
at the rod level, leaving the MS- and C-rings detached (9). While we have no evidence
that our observations in the current work are connected to the starvation-related pro-
cess, they add to the repertoire of stable flagellar subcomplexes under stress condi-
tions, where the C-ring dissociates from the motor without the MS-ring leaving the rest
of the flagellum (including the extracellular parts) as a stable structure.

The evolution of the bacterial flagellum is believed to have started as a primordial
secretion system that subsequently added the periplasmic and extracellular components
(rod, hook, and filament) by multiple gene diversification and duplication events (24).
This connection between the flagellum and a secretion system is further bolstered by its
structural similarity to the bacterial type III secretion system (25, 26), where it is believed
that the evolution of the flagellum preceded that of the type III secretion system (27).
However, a recent high-resolution structure of purified flagellar basal bodies highlighted
structural differences between these two molecular machines (28). Presumably, tinkering
of a primordial secretion system with ion channels and the addition of the switch com-
plex led to the formation of the first motor. However, was the C-ring added before or
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after the union between the preliminary secretion system and the ion channels? When
did the rod, hook, and filament evolve? While both the preliminary secretion system and
ion channels could have had independent functions unrelated to cell motility, it remains
unknown what the role of the ancestral C-ring proteins was before functioning as a
switch complex. Just as the secretion and assembly of the rod, hook, and filament pro-
teins mirror their evolutionary past (24), it could be that the flagellar relics lacking the
switch complex identified here, and the PL-subcomplexes in the starvation-related pro-
cess, also reflect major modular transitions in the history of flagellar evolution.

Experimental procedures. Cell growth, sample preparation, cryo-ET imaging, and
image processing were performed as previously described for E. coli and H. hepaticus (14),
H. crunogenus (29), A. longum (30), T. primitia (31), and Vibrio cholerae (32). Pseudomonas
fluorescens was grown in K10 medium as described in reference 33 and C. jejuni as
described in reference 34. H. gracilis was grown for 48h in broth 233 at 26°C without anti-
biotics to a final optical density at 600 nm of ,0.1 and subsequently incubated with
attack-phase Bdellovibrio bacteriovorus for 3days, after which cells were spun down at
1,000� g for 5 min and concentrated ;10� for plunge-freezing. Selenomonas spp. were
isolated from the human gut by Emma Allen-Vercoe, University of Guelph. Cells were
grown anaerobically in fastidious anaerobe agar supplemented with 5% defibrinated
sheep’s blood. B. subtilis protoplasts (obtained from the D. Kearns laboratory, Indiana
University) were prepared with lysozyme using a modified protocol based on reference 35.
Subsequent imaging and processing were performed as described for other species.
Subtomogram averaging was done as in reference 6.
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