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SUMMARY

Electron cryotomography enables 3D visualization of
cells in a near-native state at molecular resolution.
The produced cellular tomograms contain detailed
information about a plethora of macromolecular
complexes, their structures, abundances, and spe-
cific spatial locations in the cell. However, extracting
this information in a systematic way is very chal-
lenging, and current methods usually rely on individ-
ual templates of known structures. Here, we propose
a framework called ‘‘Multi-Pattern Pursuit’’ for de
novo discovery of different complexes from highly
heterogeneous sets of particles extracted from entire
cellular tomograms without using information of
known structures. These initially detected structures
can then serve as input for more targeted refinement
efforts. Our tests on simulated and experimental
tomograms show that our automated method is a
promising tool for supporting large-scale template-
free visual proteomics analysis.

INTRODUCTION

Nearly every major process in a cell is orchestrated by the inter-

play of macromolecular assemblies and often requires a

nonrandom spatial organization in the cell. Therefore, when

modeling complex biological functions, it is crucial to know

the structure, abundance, and locations of the entire set of

macromolecular complexes. Currently, proteomics studies

extract protein component lists often from lysed cells, but little

is known about how proteins and their complexes are spatially

arranged in a crowded cell, limiting the plausibility to model

biological functions and 3D architecture of cells (Singla

et al., 2018).
Structur
Electron cryotomography (ECT) can generate 3D reconstruc-

tions of cells in hydrated, close to native states at molecular res-

olution (Mahamid et al., 2016; Chang et al., 2014). New imaging

technologies and automation allows labs to obtain hundreds of

electron cryotomogramswithin several days, potentially contain-

ing millions of complexes. It is therefore now possible to detect

both structures and spatial positions of large complexes in indi-

vidual cells. However, the structural discovery of unknown com-

plexes in tomograms still remains very challenging due to a num-

ber of factors. First, complexes can vary significantly in shape,

size, and cellular abundance. Second, identifying individual

complexes is significantly more difficult in cellular tomograms

than in tomograms of purified complexes, due to high crowding

levels (Lu�ci�c et al., 2013) and possibly small copy numbers.

Third, experimental structures of most complexes are unknown,

which limits the use of template libraries for template-matching

methods. Fourth, cell tomograms often have low signal-to-noise

ratio (SNR) and low contrast, as the sample is thick (>300 nm). In

addition, the tomogram image is modulated by the contrast

transfer function effect. Finally, the limited range of tilt angles

leads to a partial sampling of images andmissing structural com-

ponents in the Fourier space, resulting in anisotropic resolution

and distortions (i.e., the missing wedge effect). Therefore, unlike

large organelles, which can be detected by visual inspection, the

systematic structural classification and recovery of all accessible

complexes in cellular tomograms is difficult and can only be

venturedwith the aid of highly efficient, automatic, and both tem-

plate-free and template-based analysis methods.

The pioneering work to quantitatively analyze the spatial orga-

nizations of complexes in cellular tomograms used ‘‘template

matching’’ (Beck et al., 2009; Bohm et al., 2000; Frangakis

et al., 2002; K€uhner et al., 2009; Nickell et al., 2006). This

approach uses a given complex’s known high-resolution struc-

ture (e.g., X-ray crystallography, NMR, cryoelectron microscopy

single-particle reconstruction) to simulate an ECT reconstruc-

tion, the template, which is then used to search for matches in

the tomogram. Naturally this approach is limited to localizing

complexes with known structures, which represent only a small
e 27, 679–691, April 2, 2019 ª 2019 Published by Elsevier Ltd. 679
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fraction of all the complexes in the cell. Assessing the reliability of

detected matches is also challenging (Yu and Frangakis, 2014)

because the template structure can misfit its targets, due to

either conformational changes or additional bounded compo-

nents to the structure in vivo, or because the template struc-

ture is from a different organism and exhibits a different

conformation.

To obtain novel structural information, a few alignment and

subtomogram averaging (e.g., Schmid and Booth, 2008) and

classification (e.g., Bartesaghi et al., 2008; Xu et al., 2012) ap-

proaches have been developed recently. Subtomogram aver-

aging assumes that all subtomograms contain the same struc-

ture and iteratively searches for rigid transform parameters for

each subtomogram to align all subtomograms. By contrast, clas-

sification methods often search iteratively for both rigid trans-

form and categorization parameters to separate subtomograms

into structurally homogeneous groups before averaging. Such a

classification is much more challenging than averaging. Due to

the computationally intensive nature of 3D image processing

(especially the subtomogram alignment), current classification

methods are often tailored to high-quality hand-picked subto-

mograms usually containing a relatively small number of struc-

tural classes, and are often focused on separating subtle confor-

mational or compositional states of a single complex of interest

(e.g., Bartesaghi et al., 2008; Chen et al., 2014; Kuybeda et al.,

2013; Scheres et al., 2009). In such cases, the subtomograms

are usually obtained by template matching often followed by

visual inspection and preselection of high-quality patterns.

Although reference-free classification may be applied to such

subtomograms, at heart they depend on a template, obtained

from a known structure. These approaches have several draw-

backs, limiting their use in detecting unknown structures on a

proteome-wide scale, i.e., from a highly heterogeneous set of

subtomograms obtained through automated template-free par-

ticle picking, without the knowledge of structures. In cellular to-

mograms, automated template-free particle picking produces

large numbers of subtomograms containing large numbers of

complex classes. For obtaining a high SNR in each class a suffi-

ciently large copy number is needed, and therefore it is neces-

sary to iteratively process a very large number (tens to hundreds

of thousands) of subtomograms. However, the computational

cost of template-free classification methods is proportional to

the number of subtomograms multiplied by the number of struc-

tural classes. Therefore, these applications are computationally

extremely demanding and not feasible when applied to subto-

mogram classification on a proteome-wide scale.

Recently, deep learning has been used for classification of het-

erogeneous sets of simulated subtomograms and has achieved

fairly good accuracy (Xu et al., 2017; Yu and Frangakis, 2011).

In another paper (Chen et al., 2017), the authors trained convolu-

tion neural networks to identify ribosomes, double membrane,

microtubules, vesicles, and so forth. These supervised learning

methods are important steps in moving toward identification of

known patterns in electron cryotomograms; however, they

depend on user input of ground truth structures of complexes.

To our knowledge, no subtomogram classification method ex-

ists that is specifically optimized for and can be applied to large-

scale applications in a high structural heterogeneity and unsu-

pervised setting. Therefore, current whole-cell approaches are
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restricted to a focused analysis of one or a few target complexes

of interest, whose low-resolution structures are often known.

Here, we address this problem through pattern mining, which

searches for high-quality structural patterns reoccurring in a

cellular tomogram. A structural pattern is defined as a set of

aligned subtomograms, which likely contain the same structure

and when averaged produce the density map of the complex.

To identify patterns, we propose a framework called Multi-

Pattern Pursuit (MPP) (Figure 1), specifically designed for sup-

porting large-scale template-free pattern mining among highly

heterogeneous particles to detect structural patterns of variable

shapes and sizes from cellular tomograms. MPP takes as input a

large set of subtomograms obtained through automated particle

picking from entire cell tomograms and produces the shape,

abundance, positions, and orientations of the patterns. To our

knowledge, our approach and software is one of the first that

is specifically optimized to tackle this difficult unsupervised

problem at a proteome-wide scale. It consists of a number of

methodological innovations, including the MPP framework,

imputation-based dimension reduction, reference-guided adap-

tive subtomogram masking, adaptive smoothing, pose normali-

zation-based prefiltering, and a genetic algorithm for structure

refinement.

There are substantial differences between MPP and existing

template-free classification methods, in terms of bothmethodol-

ogy and scope. Our software is specifically designed to handle

(1) large sets of subtomograms extracted from cellular tomo-

grams (tens of thousands); (2) subtomograms of relatively large

numbers (tens to hundreds) of different structural classes, with

widely varying shapes, sizes, and abundances; and (3) subtomo-

grams extracted from a crowded environment, which may

include fragments of neighboring complexes. Also, our aim is

not to determine a high-resolution structure of an individual com-

plex, but de novo discovery of many coarse structures and their

relative abundance in a heterogeneous sample. These coarse

structures can then be further refined to higher resolution by

other methods or can serve as templates for a secondary anal-

ysis of the tomograms, for instance through machine learning

approaches or template matching. The identity of some patterns

can be determined by fitting to known structures but in future this

will require methods for integrating additional information about

the sample, which is not the focus of this study.

RESULTS

Overview of the Method
MPP is an iterative constrained optimization process, which de-

tects frequently occurring structural patterns that maximize a

quality score and are distinct from each other with respect to

their average density maps and the identity of subtomograms

making up the patterns. MPP relies on a very efficient subtomo-

gram alignment (Xu et al., 2012) algorithm based on constrained

correlation (Förster et al., 2008; Xu and Alber, 2012) and fast

rotational matching (Kovacs and Wriggers, 2002), and an effi-

cient, robust, and flexible parallel architecture that supports

high-throughput processing (Frazier et al., 2017).

To run MPP, the tomogram is first segmented into a library of

subtomograms by automated particle picking (Figure 1A) (Pei

et al., 2016). To increase computational efficiency, a prefiltering



Figure 1. Overview of the Method

(A) Overall processing pipeline, including particle picking, preprocessing, and postprocessing steps. The preprocessing step consists of pose normalization-

based coarse prefiltering to define sets of subtomograms containing similarly sized particles (STAR Methods: Prefiltering).

(B) MPP framework.

In the flow charts, actions are in boxes, data are on arrows, and diamonds represent decisions. Figure S1 shows details of some of the methods used in overall

pipeline.
step using a pose normalization approach can provide coarse

subtomogram alignments (STAR Methods: Prefiltering) and

classifications (Figure 1A), which divides subtomograms

into different groups that are processed separately by MPP

(Figure 1B).

Each MPP run is divided into iterative steps, which are

repeated until no new patterns are found (typically �20–30 iter-

ative cycles). Here, we provide an overview of the method (Fig-

ure 1B and STAR Methods: MPP Framework).

Generate patterns (step 1 in Figure 1B) (STAR Methods:

Candidate Pattern Generation). Each MPP iteration starts by

generating patterns, each containing subtomograms of similar

objects in the same orientation. Patterns are generated from all

subtomograms with their currently assigned rigid transforma-

tions (the first iteration uses random transformations). The trans-

formations were calculated in the previous MPP iteration by

aligning each subtomogram to selected candidate patterns

and using the best alignment for each subtomogram (step 6 in

Figure 1B). The MPP framework is an ensemble method, and

multiple methods (clustering, sequential expansion, and genetic

algorithm-based single pattern pursuit, STAR Methods: Candi-

date Pattern Generation) are applied independently to generate

patterns from the same dataset. All patterns are then added to

a growing pattern library. Clustering of subtomograms is per-

formed in a reduced dimensional space, which accounts for
missing wedge effects by an imputation-based strategy. After

pattern generation, the subtomograms in each pattern are aver-

aged to generate the pattern density maps.

Determine the quality score of patterns and expand

pattern library (steps 2 and 3 in Figure 1B; STAR Methods:

Quality Score). We then determine a quality score for each

pattern, which measures the variance in the voxel intensities be-

tween the constituent subtomograms. We use a spectral SNR-

based Fourier shell correlation (SFSC) score, which measures

SNR as a result of the variance in the voxel intensities at all

spatial frequencies. It is computed efficiently in parallel, can ac-

count for missing wedge effects, and is calculated from all sub-

tomograms, which reduces the underestimation of the resolution

due to the sample size limit (Liao and Frank, 2010). The quality

score and density averages for all newly generated patterns

are then added to the pattern library (Figure 1B). MPP also con-

tains procedures to remove redundant patterns from the pattern

library.

Select a disjoint set of highest-quality candidate pat-

terns from pattern library (step 4 in Figure 1; STAR Methods:

Selection of Disjoint High-Quality Patterns). At each iteration, a

new selection of candidate patterns is made from the pattern

library. These candidate patterns serve as references for sub-

tomogram alignments in the next iterative step. To make the

optimal selection, we search for the combination of patterns
Structure 27, 679–691, April 2, 2019 681



Figure 2. Individually Simulated Subtomograms

MPP results for individually simulated subtomograms of relatively low resolution with a voxel size of 1 nm.

(A) Column plot representation of the contingency table (Table S1C) of the subtomogram membership overlap between true and inferred patterns. The height of

each column at each axis corresponds to the total number of subtomograms of the ground truth complex and the total number of subtomograms in the predicted

patterns, respectively. The height of each column inside the table corresponds to the number of subtomograms for each ground truth complex in each predicted

pattern. The colors of the columns indicate structural consistency between ground truth and corresponding pattern averages, quantified as FSC with cutoff 0.5

(STAR Methods: Validation Procedure).

(B) The isosurfaces of predicted patterns compared with ground truth structures.

The ground truth structures are indicated by their PDB code, and the number of instances and the isosurface representations of the predicted patterns with the

number of instances and the false discovery rate (FDR) in parentheses. See also Table S1.
that leads to the best combined SFSC quality score and

include the highest number of subtomograms from the library

without any substantial overlap in terms of subtomogram iden-

tities between selected patterns. After pattern selection, all

subtomograms are optimally aligned to the density maps of

each selected candidate pattern and the transformation for

the best alignment score is stored for each subtomogram

(align subtomograms against selected patterns, step 6 in

Figure 1). Depending on the set of candidate patterns, the

transformation for a given subtomogram may vary between

iterations, which can lead to new patterns or reassignment of

subtomograms to different patterns.

The whole MPP process is repeated until a new iteration

does not generate any new, nonredundant candidate patterns

and has therefore converged to a final set of patterns. The

output is the list of candidate patterns from final iteration, the

subtomograms assigned to each pattern, and their rigid trans-

formations, as well as the pattern density averages and loca-

tions in the tomogram.

Next, we assessed the performance of our method. We

applied MPP to three experimental cellular tomograms from

different bacteria species and carried out two types of studies

using benchmarks of realistically simulated tomograms.
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Individually Simulated Subtomograms
First, we assessed MPP with simulated subtomograms as ex-

pected under low crowding conditions. We simulated 11,230

realistic and distorted subtomograms, containing a benchmark

mixture of 22 different complexes from the PDB (Berman et al.,

2000) with a wide range of size, shape, and abundance (STAR

Methods: Simulation of Realistic Tomograms—Individually

Simulated Subtomograms) (Figure 2B). To our knowledge, this

is a substantially larger number of subtomograms and structural

classes than any previously published classification.

Subtomograms were simulated at voxel spacing of 1.0 nm and

resolution of 4 nm. Results converged after 32 iterations and

MPP detected 12 patterns from the highly distorted subtomo-

grams, despite the relatively low resolution (Figures 2A and 2B;

Table S1). In general, subtomograms of a given complex were

highly abundant in no more than one detected pattern (Fig-

ure 2A). All 12 patterns were enriched with one dominant com-

plex, and the shapes of all detected pattern averages were

very similar to the true complexes (Figures 2A and 2B). Eight pat-

terns uniquely matched complexes with a false discovery rate

(FDR) of %10%. Among these, four patterns had 0% FDR,

meaning that all the subtomograms in each pattern were from

the same true class. Also, visually the structures are highly



Figure 3. Complexes under High Crowding Conditions

MPP results for simulated tomogram containing a crowded mixture of complexes.

(A) Left panel: column plot representation of the contingency table for the simulated cellular tomogramof a crowdedmixture of complexes (Table S2C) at relatively

low resolution with tomogram voxel size = 1 nm. Center panel: isosurface representations of the predicted patterns with the number of instances and FDR in

parentheses. Right panel: a slice through a simulated tomogram.

(B) Left panel: isosurface of the ground truthmixture of crowded complexes. Second panel from the left: simulated tomogram. Third panel from the left: isosurface

representation of the predicted patterns and their localizations. Fourth panel from the left: true positives among predicted patterns. Dendrogram of hierarchical

clustering of templates of macromolecular complexes used for simulation is shown in Figure S2.

(C) Left panel: column plot representation of the contingency table for all ten simulated cellular tomograms of a crowded mixture of complexes (Table S3C) at

relatively higher resolution with tomogram voxel size = 0.4 nm. Center panel: isosurface representations of the predicted patterns with the number of instances

and FDR in parentheses. Right panel: a slice through one of the simulated tomograms.

(legend continued on next page)
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similar to the true complexes (Figure 2B). The structural consis-

tency between the densities of the eight detected complexes

and the ground truth structures is high and ranges from 4.7 nm

to 5.3 nm (measured by Fourier shell correlation [FSC] with 0.5

cutoff), which is comparable with the applied resolution (Fig-

ure 2A and Table S1C). Overall the best performances were

achieved with the largest complexes, e.g., glutamine synthetase

(PDB: 2GLS, FDR = 0%, 88% particles detected), GroEL (PDB:

1KP8, FDR = 0%, 75% particles detected), and 50S ribosomal

subunit (PDB: 2AWB, FDR = 0%, 57% particles detected).

Four patterns had larger FDRs (PDB: 2BYU, 21%; 1W6T, 30%;

1VRG, 43%; 2BO9, 45%); however, in each of these patterns

essentially only a single complex was falsely co-assigned. This

complex had very similar shape to the target complex at the

given resolution, which explains why the overall shape of the

complex was still well predicted.

Seven complexes were not recovered (PDB: 1F1B, 1GYT,

1VPX, 2H12, 2IDB, 2GHO, and 1QO1). The majority of these

had relatively low abundance (<300 instances), relatively

small size, and nondiscriminative shape features. Importantly,

following MPP’s design strategy, the subtomograms of these

complexes were not wrongly assigned to any pattern but were

simply left out, emphasizing the importance of the pattern-

mining approach in detecting high-quality patterns rather than

attempting to classify all the subtomograms.

When repeating our calculations with different initial orienta-

tions for all subtomograms, the same complexes were detected

with similar FDR ranges (eight complexes with FDR <10%). We

also repeated our analysis with different random abundances

for the complexes. With larger copy numbers, two additional

complexes were detected: Aminopeptidase A (PDB: 1GYT,

FDR = 1%, 79% particles detected) and Transaldolase (PDB:

1VPX, FDR = 0%, 48% particles detected). Our analysis sug-

gests that a minimum copy number of 200–300 is necessary to

reliably detect complexes at given resolution.

When running MPP on a 300 CPU core cluster with 11,230

subtomograms, one iteration took about 7 h. Pairwise alignment

between subtomograms and selected patterns is the most time-

consuming step and took about 6 h.

Complexes under High Crowding Conditions
(Subtomograms Extracted from Whole Tomograms
Containing Crowded Mixtures)
Next, we tested MPP on realistically simulated tomograms

of crowded cell cytoplasm, containing mixtures of the same 22

complexes (STAR Methods: Simulation of Realistic Tomo-

grams—Crowded Mixture of Macromolecular Complexes). The

crowding level of the simulated tomogram is 15.2%, which falls

within the expected range for cell cytoplasm (Guigas et al., 2007)

(Figures 3A and 3B). The distortion level of the simulated

tomogram is similar to experimental tomograms of whole

bacterial cells (STAR Methods: Estimation of Effective-SNR).

We used automated ‘‘difference-of-Gaussian’’ particle picking
(D) Left panel: isosurface of the ground truth mixture of crowded complexes from o

from the left: simulated tomogram. Third panel from the left: isosurface representa

true positives among predicted patterns.

See also Tables S2 and S3.
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(Voss et al., 2009) to extract subtomograms that likely contain

a target complex.

The automated particle picking favored extraction of larger

complexes. Eleven out of the 22 types of complexes were

extracted with at least 200 instances, while 11 mostly smaller

complexes had fewer than 140 extracted subtomograms. In to-

tal 4,901 particles out of 10,000 instances were detected by par-

ticle picking (STARMethods: Particle Picking and Subtomogram

Extraction—Crowded Mixture of Macromolecular Complexes—

Low Resolution). Because of crowding, the subtomograms of

extracted target complexes may also contain fragments of

neighboring structures. Therefore, we applied our method for

automatically masking target complexes at each MPP iteration

(STAR Methods: Target Complex Region Segmentation). This

test case is substantially more challenging than the previous

one because errors in automated particle picking and target

complex segmentation can influence the MPP performance.

Despite these challenges, MPP detected six patterns, four of

which with FDRs of %23% and very well predicted shapes

with structural consistencies between predicted averages and

ground truth complexes ranging from 4.3 nm to 4.8 nm (FSC

with 0.5 cutoff) (patterns 0, 1, 3, and 4, in Figures 3A and 3B;

Table S2). Among these, one (50S ribosome/PDB: 2AWB,

discovered as pattern 0) had an FDR of 0%. MPP also predicted

two patterns that are a mixture of complexes (patterns 2 and 5)

(Figure 3A). These two have structural consistencies %6.5 nm

and are very similar in shape to the most abundant complex in

the pattern. One of these patterns (pattern 5, PDB: 2GLS)

contained only two complexes of similar shapes. Detected

pattern 2 has the smallest size and is a mixture of more than

ten small complexes. Most of these complexes have low abun-

dance after particle picking and are of similar shape, as shown

by their tight clustering based on shape similarity (Figure S2).

At the given resolution and crowding level, it is not possible to

distinguish these small complexes. However, MPP still predicted

their similar size and location.

To test the reproducibility of our approach, we simulated

another tomogram with different random positions and orienta-

tions of the complexes. Now six patterns were successfully

recovered at FDR <30%, including the largest complexes

(PDB: 1KP8, 2AWB, 3DY4, and 2GLS) and two additional com-

plexes (PDB: 1LB3 and 1FNT) that were detected as a result of

increased copy numbers after particle picking.

Next, the MPP analysis was performed on crowded tomo-

grams simulated at higher resolution and lower voxel size

(0.4 nm) (Figures 3C and 3D; STAR Methods: Simulation of

Realistic Tomograms—Crowded Mixture of Macromolecular

Complexes—High Resolution). We simulated ten different tomo-

grams containing a total 35,172 particles (Figure 3C, right panel:

center slice of first tomogram). Automated particle picking ex-

tracted 18,876 subtomograms. To test the robustness of the

approach, we performed three independent MPP runs, starting

each individual run with a different initial random orientation for
ne of the ten simulated tomograms (�10% of the entire dataset). Second panel

tion of the predicted patterns and their localizations. Fourth panel from the left:



Figure 4. Discovered Patterns in Three Experimental Cellular Tomograms: A. longum, Intact H. gracilis, and Intact B. bacteriovorus Cells

(A) Three slices of the electron cryotomogram. A. longum (left), intact H. gracilis (center), and intact B. bacteriovorus (right).

(B) Embedded instances of detected patterns.

(legend continued on next page)
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each subtomogram. Despite a high crowding level, MPP showed

excellent results and detected 14, 13, and 12 complexes over

three runs, respectively (Figures 3C and 3D; Table S3 for run

#2). Twelve complexes were detected in all three runs. Two addi-

tional complexes were detected in two independent MPP runs,

starting each time from different initial subtomogram orienta-

tions. For each run, nine complexes were detected with an

FDR of <3%, and between four and six complexes were de-

tected at an FDR of 0%. Some complexes could not be detected

due to their low copy numbers (e.g., PDB: 1A1S, 7; 1W6T, 137).

This observation showcases the importance of performing the

analysis with very large sample sizes and the need for highly effi-

cient methods such as MPP that can handle a large number of

diverse subtomograms. Finally, we also propose a strategy to

combine the results of independent MPP runs: all final patterns

from each of the three different MPP runs can be combined

into a single pattern library, which then can be used to select

the best pattern combinations.

Experimental Cellular Tomograms
We also tested MPP on three tomograms of whole bacteria,

namely single cells of lysed Acetonema longum, intact Hylemo-

nella gracilis, and intact Bdellovibrio bacteriovorus with voxel

sizes of 1.2 nm, 0.49 nm, and 0.42 nm, respectively (Figure 4A

and STAR Methods: Experimental Tomogram Acquisition). We

performed automated, template-free particle picking to extract

a total of �30,000 subtomograms from the three cells. For intact

cells (H. gracilis and B. bacteriovorus) only the subtomograms

within the cellular region were extracted. However, A. longum

appeared lysed and particles were noticeable also at the cell

exterior, which was included in the analysis. We then applied

preprocessing (STAR Methods: Prefiltering) and applied MPP

separately for each cell type.

MPP discovered 12, 15, and 10 patterns of a relatively high-

quality score for A. longum, H. gracilis, and B. bacteriovorus,

respectively (Figures 4B and 4C; STAR Methods: Pattern Min-

ing—Experimental Tomograms; Table S4; Videos S1, S2, and

S3). The resolution of these patterns (gold standard FSC) ranged

from 4.1 to 5.8 nm in A. longum, 3.5 to 10.5 nm in H. gracilis, and

4.8 to 15.0 nm in B. bacteriovorus. The shapes and positions of

some patterns already give indications as to the identity of the

complexes. For example, several different patterns clearly repre-

sentedmembrane particles lining the cell boundaries (Figures 4B

and 4C) (e.g., patterns 2, 3, and 7 forB. bacetriovorus, Table S4F;

and patterns 5, 6, and 9 for A. longum, Table S4B). The different

membrane patterns varied in their locations, for instance

different patterns for the inner and outer membranes. Some

larger patterns have a very similar shape and size to GroEL

(pattern 4 in A. longum) and ribosome (patterns 0, 1, 2 in H. gra-

cilis; and patterns 0, 1, 9 in B. bacteriovorus), and were also

observed at large abundance (e.g., a total of 802 copies of ribo-

some-like patterns in H. gracilis). We refined these patterns

further using the genetic algorithm method (STAR Methods:

Candidate Pattern Generation—Genetic Algorithms). Figure 4C
(C) Upper panel: embedded instances, zooming in on a particular region. Lower

pattern is also fitted with a known atomic model of GroEL. Isosurface of the ave

GroEL (PDB: 1KP8) and ribosome complexes (PDB: 2J00-2J01).

See Table S4 and Videos S1, S2, and S3.

686 Structure 27, 679–691, April 2, 2019
shows the high similarity between these structures and the

GroEL and 70S ribosome templates simulated from their atomic

structures.

Strikingly, we observed a remarkably good fit of the atomic

structure of GroEL into the average density of pattern 4 in A.

longum (Figure 5A). We also aligned all the subtomograms

from each cell type against a collection of the 28 different

template structures most abundant in cells. We found that

the alignment scores for subtomograms of the GroEL-like

pattern 4 were statistically significantly higher to the GroEL

template (PDB: 1KP8) than to any other template (one-sided

Wilcoxon rank-sum test with p < 3.2�10, without multiple com-

parison adjustments, Figure S3A), confirming the clear visual

similarity of pattern 4 with GroEL. The second closest match

was the GroEL/GroES complex (PDB: 1AON), although this

template had significantly lower alignment scores. Also, we

showed that the subtomograms of pattern 4 had the strongest

matches to the GroEL template in terms of alignment scores,

compared with all other extracted subtomograms of A. longum

(p < 2.2 3 10�220, Figure S3B). These tests indicate that our

template-free approach yields similar results to a template-

matching approach with GroEL as a template structure. All

these observations support the hypothesis that the subtomo-

grams in pattern 4 contain a bacterial analog of the GroEL com-

plex. Interestingly, the high abundance of GroEL complexes

(481 instances) is observed only in the A. longum cell and

may be related to a stress response. We note that this cell ap-

peared to be dead and lysed before image acquisition (Susin

et al., 2006).

Equally convincing are the assessments of ribosome struc-

tures in H. gracilis (patterns 0, 1, 2, Figure 4C) and B. bacteriovo-

rus cells. The subtomograms in pattern 0, 1, and 2 had the

highest alignment scores with the ribosome template (both the

full ribosome PDB: 2J00-2J01 and its 50S subunit with PDB:

2AWB) (Figures S3D and S3F) (p < 4.1 3 10�22) compared with

any of the other 26 templates, indicating that all three patterns

are most likely ribosome structures. Subtomograms in pattern

1 had significantly higher alignment scores with the ribosome

than all remaining extracted subtomograms (p < 2.0 3 10�125,

Figure S3E). All these observations support the hypothesis that

these patterns contain a ribosome structure.

Similarly, in B. bacteriovorus, the subtomograms in pattern 1

(resolution 12.0 nm, Figure 4C and Table S4F) were visually

similar to the ribosome and had significantly higher alignment

scores to ribosome template (PDB: 2J00-2J01 and 50S subunit

with PDB: 2AWB) compared with any of the other 26 templates

(p < 1.7 3 10�24, Figure 5B). Compared with all detected pat-

terns, subtomograms of pattern 1 had the highest alignment

scores to the ribosome template (PDB: 2J00-2J01) (Figure 5C)

and also had the highest-ranking scores compared with all other

extracted subtomograms (p < 6.3 3 10�6).

Interestingly, we found distinct spatial distributions for

different complexes in B. bacteriovorus tomogram. For

instance, the ribosomal patterns are excluded from central
panel: isosurfaces of one example pattern from each experiment. GroEL-like

rage density of the example pattern, aligned with the known structures of the



Figure 5. Analysis of Tomograms

(A) The isosurface of the subtomogram average density map of pattern 4 from A. longum, fitted with the known structure of the GroEL (PDB: 1KP8).

(B) Assessment of pattern 1 detected in tomogram of B. bacteriovorus cell. Box plot of the distribution of alignment scores of the subtomograms of pattern 1

against all different template complexes (denoted by PDB code). The complexes are ordered according to median score in descending order. One-sided Wil-

coxon rank-sum test with p-value < 1.7 310�24.

(C) (Red) box plot of the alignment score distribution of subtomograms in pattern 1 (B. bacteriovorus) against the ribosome template complex (PDB: 2J00-2J01).

(Blue) box plot of the alignment score distribution of all other extracted subtomograms against the ribosome template. One-sided Wilcoxon rank-sum test with

p-value < 6.3 3 10�6.

(D) A thin section of embedded instances of different patterns, outlined by embedded instances of membrane patterns from tomogram of B. bacteriovorus cell.

Left panel: a slice of tomogram. Shown are all membrane patterns in yellow. Second panel from left: patterns 0, 1, 9 containing ribosome structures. Third panel

from left): pattern 6. Fourth panel from left: patterns 4 and 5. For analysis of patterns from tomograms of A. longum and H. gracilis, see Figure S3.
regions of the cell (Figure 5D, second panel), where the bacte-

rial nucleoid is located. It is likely that ribosomes would be

positioned close to, but not directly overlapping with, regions

of the nucleoid genome. Ribosome-like structures also are

less abundant in the tip region associated with the bacterial

flagella motor, although we cannot exclude the possibility of

imaging artifacts being partially responsible for the lack of

ribosome structures in this region. Interestingly, two smaller

patterns (patterns 4 and 5, Figure 5D, fourth panel) were only

enriched in the tip of the bacteria where the bacterial flagella

motor is located. Another small pattern (pattern 6) in B. bacter-

iovorus is located exclusively in the area of the nucleoid

genome (Figure 5D, third panel). Based on location, size, and

abundance we could hypothesize that this pattern may corre-

spond to the RNA polymerase II complex. However, at this

stage we can only speculate about the identity of some of

the complexes, based on their shape and locations in the

cell. In future, one could apply independent refinement

methods to increase the resolution of the resulting averages.
Higher resolution may provide further evidence to the identity

of some complexes.

Currently ourmethod has not detectedmembrane complexes.

Partially this is due to the low resolution of bacterial tomograms

(i.e., 0.5–1 nm voxel size approximately). Also, it is possible that

the alignment of subtomograms containing membranes is domi-

nated by the membrane portion. In addition, the applied differ-

ence-of-Gaussian particle-picking method may not be optimal

for detecting membrane particles. We expect that tailored parti-

cle picking and increased resolution in combination with refine-

ments optimized for membrane subtomograms may facilitate

the detection of membrane complexes in future.

In summary, our aim was not to determine the high-resolution

structure for an individual complex, but the large-scale detection

of coarse structures and their relative abundance in large hetero-

geneous samples that can then be the basis for a refined

analysis. Further development of methods that integrate other

orthogonal datasets would facilitate the identification of the

patterns.
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DISCUSSION

ECT can produce large quantities of cell tomograms. There is an

urgent need for a systematic screening of cell tomograms to

detect frequently occurring patterns. Suchmethods have the po-

tential to discover macromolecular complexes on a large scale.

The MPP method is designed for discovering structure models

in a systematic and template-free fashion from a large number

of subtomograms containing many different structural classes.

Because MPP does not rely on any prior structural knowledge,

it is complementary to template-based subtomogram classifica-

tionmethods andmachine learning approaches for the detection

of complexes in tomograms.

In comparison with template-free subtomogram classification,

MPP has some important advantages. The computational

complexity for template-free classification methods increases

with the product of the number of subtomogram classes and

the size of the subtomogram library. Therefore, traditional tem-

plate-free subtomogram classification methods have several

drawbacks, which limit their use in detecting unknown structures

from highly heterogeneous samples with large numbers of

different complexes. MPP is specifically designed to efficiently

process such highly heterogeneous datasets extracted at a pro-

teome-wide scale. The resulting pattern library from MPP can

then serve as a starting point for additional refinement methods

to process and increase the resolution of individual patterns.

Our proof-of-principle MPP applications showed that suc-

cessful detection of complexes can depend on the copy

numbers and also the shape and size of the complexes. For

example, larger complexes can generally be more easily de-

tected even at larger voxel sizes. Typically, a minimum number

of instances of complexes is necessary to detect structures suc-

cessfully. As shown in the Results section, at voxel sizes of 1 nm

around 300 copies of a complex are necessary for their detec-

tion. For example, complex 1GYT could not be detected in a da-

taset containing only 195 instances, whereas 829 copies of this

complex in another dataset led to the successful detection of its

structure (see Individually Simulated Subtomograms). For a few

complexes (e.g., complex 1F1B), even increased copy numbers

were not sufficient to detect the complex structures. The reason

for this may be that these complexes are relatively small and/or

lack distinct shape features at the given resolution. Crowding

levels and resolution can also influence the results of MPP.

Increased crowding levels affect the performance of the auto-

matic particle picking, while increased resolution improves the

discovery rate in detecting patterns. MPP results can also vary

depending on optimization parameters, for example, the number

of dimensions used in the dimension reduction step or k value for

k-means clustering. However, MPP can be rerun multiple times

with different parameter settings and the final sets of candidate

patterns can be combined in a common pattern library, which

can then be included in a subsequent new MPP run.

Our method represents a substantial step toward visual prote-

omics analysis inside single cells. Automatic unsupervised

pattern mining inside cellular electron cryotomograms is still

very challenging, and our approach is only a first step in this di-

rection. Improved methods for particle picking, subtomogram

averaging, pattern generation, and quality scores have potential

to improve the performance of MPP. On the other hand, together
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with recent breakthroughs on direct detectors (Jin et al., 2008)

and phase plates (Murata et al., 2010), which significantly

improve contrast and resolution of cellular ECT data, correlative

light and electron microscopy (Chang et al., 2014), and focused

ion beammilling (Rigort et al., 2012), which enables ECT to image

a substantially larger variety of cell types, we expect that our

method can become an integral part of cellular ECT applications.

In addition, MPP is also useful for analyzing tomograms of highly

heterogenic particle mixtures, such as cell lysates. Moreover,

once patterns are detected they can be used by other

methods such as template searches, subtomogram classi-

fications, subtomogram averaging methods, and supervised

learning methods for further refined structural recovery and sep-

aration of protein species. Therefore, our work complements

existing template-based and template-free methods and can

emerge as an important tool for whole-cell visual proteomics

and modeling. In future, we envision the integration of additional

information about sample protein compositions and tomogram

locations to facilitate the identification of unknown detected

complexes.
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STAR+METHODS
KEY RESOURCE TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Bacterial and Virus Strains

Acetonema longum strain APO-1 Tocheva et al., 2014 DSM 6540

Bdellovibrio bacteriovorus Lambert and Sockett, 2008 HD100

Hylemonella gracilis Canale-Parola et al., 1966 ATCC 19624

Deposited Data

Yeast 20S proteasome in complex with

spirolactacystin

Groll et al., 2008 PDB: 3DY4

Recombinant mouse L chain ferritin Granier et al., 2003 PDB: 1LB3

RECA Hexamer Model Yu and Egelman, 1997 PDB: 2REC

GroEL-KMgATP Wang and Boisvert, 2003 PDB: 1KP8

Yeast 20S Proteasome in complex with proteasome

activator PA26 from Trypanosome Brucei

Whitby et al, 2000 PDB: 1FNT

Propionyl-CoA carboxylase, beta subunit

(TM0716) from Thermotoga Maritima

Joint Center for Structural

Genomics (unpublished)

PDB: 1VRG

Glutamine Synthetase Yamashita et al, 1989 PDB: 2GLS

Human carboxypeptidase A4 in complex

with human latexin

Pallares et al, 2005 PDB: 2BO9

Bacterial ribosome from Escherichia coli Schuwirth et al, 2005 PDB: 2AWB (4V4Q)

M.tuberculosis Acr1(Hsp 16.3) fitted

with wheat sHSP dimer

Kennaway et al, 2005 PDB: 2BYU

Octameric Enolase from Streptococcus pneumoniae Ehinger et al, 2004 PDB: 1W6T

Carbamoyl Phosphate Synthetase complexes

with ATP analog AMPPNP

Thoden et al, 1999 PDB: 1BXR

Free aspartyl-tRNA synthetase from Escherichia coli Rees et al, 2000 PDB: 1EQR

ClpP Bewley et al, 2006 PDB: 1YG6

Ornithine Carbamoyltransferase from

Pyrococcus Furiosus

Villeret et al, 1998 PDB: 1A1S

E. coli Aminopeptidase A (PepA) Str€ater et al, 1999 PDB: 1GYT

Transaldolase (EC 2.2.1.2) (TM0295) from

Thermotoga maritima

Joint Center for Structural

Genomics (unpublished)

PDB: 1VPX

Acetobacter aceti citrate synthase complexed

with oxaloacetate and carboxymethyldethia

coenzyme A (CMX)

Francois et al, 2006 PDB: 2H12

Rotary Motor in ATP Synthase from Yeast

Mitochondria

Stock et al, 1999 PDB: 1QO1

Recombinant Thermus aquaticus RNA polymerase Kuznedelov et al, 2006 PDB: 2GHO

3-octaprenyl-4-hydroxybenzoate decarboxylase

(UbiD) from Escherichia coli

Northeast Structural Genomics

Consortium (unpublished)

PDB: 2IDB

E. Coli Aapartate Transcarbamoylase P268A

mutant in the R-state in the presence of

N-phosphonacetyl-L-aspartate

Jin et al, 2000 PDB: 1F1B

Software and Algorithms

Multi Pattern Pursuit (MPP) This work http://web.cmb.usc.edu/people/

alber/Software/mpp/

Integrative Modeling Platform (IMP) Russel et al., 2012 https://integrativemodeling.org

Octave Octave version 4.2.0 https://www.gnu.org/software/octave/

IMOD Kremer et al., 1996 https://bio3d.colorado.edu/imod/

Chimera Pettersen et al., 2004 https://www.cgl.ucsf.edu/chimera/

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Python Python version 2.7 https://python.org

UCSF Tomography Zheng et al., 2007 http://www.msg.ucsf.edu/Tomography/

tomography_main.html

2D/3D Image segmentation toolbox Zhang, 2013 http://www.mathworks.com/

matlabcentral/fileexchange/24998-

2d-3d-image-segmentation-toolbox

TOM software toolbox Nickell et al., 2005 https://www.biochem.mpg.de/tom

Situs Package Wriggers et al., 1999 https://situs.biomachina.org/
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to andwill be fulfilled by the Lead Contact FA (alber@

usc.edu).

DATA AND SOFTWARE AVAILABILITY

The Source code of the methods, test data and user guide can be found at: http://web.cmb.usc.edu/people/alber/Software/mpp/

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Bdellovibrio bacteriovorus (HD100, wild-type) cells were grown in E. coli S17-1 prey cells at 30�C,Hylemonella gracilis (ATCC 19624,

wild-type) cells were grown in ATCC #233 Broth at 26�C and Acetonema longum strain APO-1 (DSM 6540) was grown anaerobically

as described (Leadbetter and Breznak, 1996).

METHOD DETAILS

Particle Picking and Subtomogram Extraction
The subtomogram extraction is done through template-free particle picking. The particle picking is based on Difference of Gaussian

(DoG) filtering (Voss et al., 2009). First, we filter a tomogram v1 using a DoG function of s = 7 nm and k-factor = 1.1, resulting in a

filtered tomogram f1. Then, we search for the collection p1 of local maxima peaks of f1. Often, there are false positive peaks, i.e., those

peaks that do not correspond to macromolecular complex instances, but rather noisy fluctuations in the non-structural regions. To

reduce such false peaks in p1, we randomly sample voxels to form another volume v0 of size smaller than original volume (e.g., 4003

4003 200 nm3 from low-resolution simulated tomograms). Then we apply the same DoG filtering to obtain a filtered map f0. Next, we

perform local maxima search to obtain a collection p0 of background peaks. Finally, we selected final peaks from p1whose values are

larger than 5 times of the standard deviation plus mean of the values of p0.

Crowded Mixture of Macromolecular Complexes

Low Resolution. After performing particle picking as mentioned above, in order to evaluate the performance, we identify true class

labels of these peaks through the one-to-one correspondence between peak locations and theminimal bounding spheres. Due to the

size preference of DoG particle picking, when setting s = 7 nm, instances of large complexes are more likely to be picked out than

instances of small complexes. Centered at each of the 4,901 peaks picked, we cut out a subtomogram of size 303 voxels. These

subtomograms are used as an input of MPP.

High Resolution. After running particle picking step on each of the tomogram separately, 18,876 subtomograms of size 753 voxels

were extracted in total, among which 18,802 were assigned true class labels.

Experimental Tomograms. For particle picking, we filtered the tomograms using the DoG function with s = 7 nm.We then select the

top 10,000 peaks and remove those peaks at the boundary of the tomogram. Centered at each peak we extract a subtomogram of

size 183 voxels. The interior cell regions are manually segmented using the Amira software (Mercury Computer Systems), and the

peaks outside the cell regions are excluded.

Remarks. In this paper, for simplicity, we use DoGwith a single fixed s for particle picking. DoG particle picking has size preference

of picked particles. In practice, in order to detect patterns of very different sizes, onemay systematically performDoGparticle picking

using multiple s (Pei et al., 2016), followed by pattern mining. In addition, other types of template-free particle picking methods may

be used instead of using DoG particle picking.

Pre-filtering
MPP is suitable for processing thousands to tens of thousands of subtomograms with affordable computation cost. However, with

the advance of automation of ECT imaging techniques, nowadays it is not difficult to acquire a substantially larger amount (for
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example, more than a million) of subtomograms within a day. Using MPP alone is not computationally feasible for processing such a

large amount of subtomograms. Therefore, an efficient coarse filtering of the subtomograms is very useful to reduce thewhole collec-

tion of subtomograms to substantially smaller subsets containing structures of relatively similar sizes and shapes. Then these sub-

sets can be further independently processed using MPP as described under next section ‘‘MPP Framework’’. In this paper, we

perform such filtering through normalization of translation and rotation of subtomograms followed by clustering.

Intuitively, the normalization of the translation of the particle inside a subtomogram can be done by calculating a key point with

respect to the particle, which is invariant to the rotation and translation of the particle. A typical example of such a key point is the

center of mass. However, because the suppression of zero frequency signal in the ECT imaging process, the mean intensity value

of a subtomogram is often close to the background intensity value (Xu and Alber, 2013). Therefore, it is hard to directly use all image

intensities of a subtomogram to accurately estimate a center of mass of the particle. Instead, we use binary segmentation to obtain a

coarse shape of the particle and calculate the center of mass of this shape. Level set based segmentation (Chan and Vese, 2001) is a

powerful, flexible method that can successfully segment many types of images, including some that would be difficult or impossible

to segment with classical thresholding or gradient-based methods. Through such segmentation, a coarse shape of the particle can

be represented by the zero-level region of a level set. The normalization of translation can then be calculated on the center of mass of

the positive part of the level set instead of on the original image intensities. Given such center of mass, we can further estimate the

general orientation (without taking into account missing wedge effect) of the particle by calculating the principal directions by

applying PCA to the coarse shape (Figure S1D).

Such a pose normalization procedure can be independently and efficiently applied to individual subtomograms. With the coarse

alignment from pose normalization, it is possible to separate particles with very distinct sizes and distinct elongated shapes through

simple and efficient clustering techniques like k-means clustering and generate an average representing general shapes. Then av-

erages of subtomograms can be inspected and the corresponding subtomogram sets can be selected further for more focused anal-

ysis. Such procedure is highly scalable and can be easily parallelized. It can usually process tens of thousands of subtomograms on a

single computer within one day.

Structural Region Segmentation

We formulate the identification of structural regions as a binary region based segmentation problem that minimizes the Chan-Vese

model (Chan and Vese, 2001), which is a popular level set based segmentation model. The model can be formulated as follows:

argminc1 ;c2 ;f m

Z
jVHðfÞj+ l

� Z
jf � c1j2HðfÞ+

Z
jf � c2j2ð1� HðfÞÞ

�
(Equation 1)

In Equation 1, f :R3 /R is the intensity of the subtomogram to be segmented. 4 :R3/R is a level set function that simultaneously

defines a boundary contour and segmentation of an image. The boundary contour is taken to be the zero-level set {4 = 0}, and the

segmentation is given by the two regions {4 < 0} and {4R 0}. H is the Heaviside step function HðxÞ =
�
0; x%0;
1; xR0;

. c1 and c2 are the

mean intensities inside the two regions.

The first term in Equation 1 measures the total area of the segment boundary. The minimization of the first term encourages the

resulting segment boundary to be smooth. The second termmeasures the difference between image intensity and themean intensity

of the corresponding segments. The minimization of the second term encourages the uniformity of the intensities inside the two

regions.

Such an optimization problem can be elegantly solved by evolving the level set function 4 through variational calculus (Chan and

Vese, 2001). In practice, we use (Zhang, 2013) as an implementation of the algorithm, where 4 is implemented using a distance trans-

form (Kimmel et al., 1996). For simplification, we choose m = 1, and l = 1
VarðfÞ, where Var(f) is variance of f. Let 4* be the optimal level

set. Suppose the region Rstructure = {4* > 0} corresponds to the high electron density in the subtomogram, then Rstructure is used to

define the structural region inside the subtomogram. Remark: In order to reduce the influence of noise, we usually apply a Gaussian

smoothing with s = 2nm to a subtomogram before segmentation.

Pose Normalization

The pose normalization is performed according to the positive part of 4*. Let f�
1(x) = 14*(x) R 0 4*(x), where 1 is the indicator function.

The pose normalization consists of following steps: First, we calculate a center of mass cf�
1
of f�

1.

cf�
1
=

R
x
f�
1ðxÞxR

x
f�
1ðxÞ

Then, we calculate

W =

Z
x

�
f�
1ðxÞ

�2�
x � cf�

1

��
x � cf�

1

�T

(Equation 2)

Then we calculate the eigen decompositionW =QLQT ofW, where Q is an orthogonal matrix consisting of eigenvectors, and the

magnitude of eigenvalues in the diagonal matrix L are ordered in descending order. Finally, the pose normalization is performed by

first translating the subtomogram (masked with Rtarget_ext, STARMethods: Target complex region segmentation) from cf�
1
to the cen-

ter of the subtomogram, then rotating the subtomogram using Q as a rotation matrix.
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Remarks.

d The coarse filtering of subtomograms may also be performed through rotation invariant features (Xu et al., 2009, 2011; Chen

et al., 2014) combined with clustering. However, to extract structure information from such filtering is not straightforward

because rotation invariant features do not provide alignment information. By contrast, for pose normalized subtomograms,

coarse representative shapes can be directly obtained from cluster centers or subtomogram averages, which is very useful

for manual inspection of these clusters.

d This method may not work when the SNR or contrast is very low. In addition, how to incorporate missing wedge to achieve a

better pose estimation is an open problem.
Multi Pattern Pursuit (MPP) Framework
The Multi Pattern Pursuit (MPP) framework takes a collection of subtomograms and searches for structural patterns. A structural

pattern is defined as a set of rigidly transformed subtomograms and their density average. These subtomograms are similar to

each other and are likely to contain the same structure. MPP aims to maximize the quality (in terms of SFSC score, STAR Methods:

Quality Score) of multiple distinct patterns extracted from these subtomograms. MPP is an iterative optimization process that

searches for patterns in the pattern space. Such space is the Cartesian product of pattern membership and rigid transform of sub-

tomograms. MPP combines novel components and our previously developed components. Each iteration of MPP consists of

following steps (Figure 1B):

1. Based on current rigid transformations T of subtomograms, generate a collection of candidate patterns Scandidate (STAR

Methods: Candidate Pattern generation).

2. Determine quality of the patterns in Scandidate in terms of their SFSC scores (STAR Methods: Quality Score).

3. Add Scandidate into the pattern library L: L ) L W Scandidate.

4. Select a set Ssel of highest quality patterns from L under the constraint of minimal subtomogram membership overlap (STAR

Methods: Selection of disjoint high-quality patterns).

5. Align the subtomogram averages of patterns in Ssel into common reference frames (STAR Methods: Align averages into com-

mon frames).

6. Align all subtomograms against each of the subtomogram averages of all patterns in Ssel.

7. Identify structurally redundant patterns Sredundant in Ssel (STAR Methods: Identification of structurally redundant patterns).

Remove patterns in Sredundant from L: L ) L \ Sredundant. In other words, patterns in Sredundant will never be selected in future

iterations.

8. Update subtomogram transformations T according to the best alignment between the subtomograms and the subtomogram

averages of the remaining selected patterns in Sremain = Ssel \ Sredundant.

9. If the patterns in Sremain are all generated from at least nstop iterations earlier, stop. Otherwise, continue to next iteration.

Remarks

d For high-throughput processing, we use our fast alignment method (Xu et al., 2011). Alternative alignment methods (e.g., Bar-

tesaghi et al., 2008; Chen et al., 2013; Frangakis et al., 2002; Schmid and Booth, 2008; Xu and Alber, 2012, 2013; Yu et al., 2013)

may also be used. Alignment methods could fail when the SNR of tomograms is very low.

d By design, our proposed framework can mine multiple patterns simultaneously. This design allows us to save computation

cost, also to keep the mined patterns distinct.

d The particles with relatively larger size may contain more signals that may be easier to be discriminated using MPP. In practice,

subtomograms of particles with very distinct sizes can be extracted separately with proper sizes, then processed separately

using MPP.

d Empirically, we set nstop = 5, which we found is sufficiently large to minimize the chance of missing new and even higher quality

patterns.

d The software implementation of MPP is based on a variant of the TomoMiner platform (Frazier et al., 2017).
Candidate Pattern Generation
TheMPP optimization is performed in two stages, which differ in the way candidate patterns are generated. After stage 1 terminates,

the MPP starts stage 2 with the rigid transforms T and pattern library L that resulted from stage 1. The main purpose of stage 1 is to

obtain updated T so that subtomograms with the same underlying structures are roughly aligned and obtain a first estimate of (the

number of) distinct patterns. Stage 1 begins with an initially empty pattern library L and randomly assigned rigid transforms T for all

subtomograms, which are updated at the end of every iteration. In stage 1, the pattern generation is performed by a dimension reduc-

tion approach (STAR Methods: Pattern Generation - Imputation based dimension reduction) followed by k-means clustering with a

fixed cluster number kk_means_fix, which is usually chosen to over-partition the collection of subtomograms. When the true set of

structurally distinct patterns is unknown, an intuitive strategy is to over-partition the number of clusters then identify and remove

the clusters leading to redundant patterns (STAR Methods: Identification of structurally redundant patterns).
Structure 27, 679–691.e1–e14, April 2, 2019 e4



After stage 1 terminates, the MPP starts stage 2 with the T and L that resulted from stage 1. In stage 2 the subtomogram mem-

bership and density averages of the patterns are improved. In stage 2, two independent methods are used to generate candidate

patterns (resulting patterns of bothmethods are added to the pattern library): first, the sequential expansionmethod (STARMethods:

Candidate pattern generation - Sequential Expansion) and second, dimension reduction followed by k-means clustering in

which the cluster number kk_means_adaptive is assigned adaptively according to jSremainj of the last iteration: kk_means_adaptive z
kk_means_adaptive_factorjSremainj, where kk_means_adaptive_factor = 1.2 is a fixed ratio.

Remarks

Each time, the k-means clustering is repeated 10 times and the best clustering result is chosen in order to reduce the chance of being

trapped in local minima. We use the k-means++ initialization (Arthur and Vassilvitskii, 2007) to improve convergence. Such a proced-

ure has been implemented in the off the shelf sklearn package (Pedregosa et al., 2011).

Imputation Based Dimension Reduction

Dimension reduction for high dimension data has been extensively studied in different areas. It is very useful for extracting key low

dimension features that contain the majority of discriminative signals across images and reducing the influence of non-informative

variance. Dimension reduction is also very useful for significantly speeding up clustering. This is because subtomograms are high

dimension data, and computation of distances between two subvolumes in a smaller number of dimensions is much more compu-

tationally effective than directly calculating distances in their original high dimensional space.

Onemajor obstacle for directly applying existing dimension reductionmethods is themissing wedge effect as a result of the limited

tilt angle range of captured projection images. As a result, the objects in a subtomogram have anisotropic resolutions across different

directions, which introduces bias to the dimension reduction (Bartesaghi et al., 2008; Förster et al., 2008). The missing wedge

effect can be described in Fourier space, where the Fourier coefficients in certain regions are missing. The locations of Fourier co-

efficients F f with valid values and missing values can be represented using a missing wedge mask function M.

MðxÞ=
�
1; if the Fourier coefficient at x is valid
0; if the Fourier coefficient at x is missing

(Equation 3)

where f :R3 /R is the function that represents image intensity of a subtomogram;F is the Fourier transform operator; and x˛R3 is a

location in the Fourier space. Two typical types of strategies have been proposed to handle the missing wedge effect for dimension

reduction. The first type omits the Fourier coefficients that are not used for dimension reduction (e.g., Heumann et al., 2011). The

second type estimates missing values (e.g., Yu et al., 2010). These methods are effective for enhancing the subtle true discriminative

signal across aligned subtomograms. However, thesemethods are generally designed for cases in which the underlying structures of

all subtomograms are similar to a single reference density map, which does not apply to a Visual Proteomics setting with the exis-

tence of a high degree of structural heterogeneity among subtomograms.

To solve this problem, we propose an imputation strategy. For each subtomogram, we use its current best aligned density map

(chosen from the set of pattern density maps in Sremain obtained from the last iteration of MPP as a reference to replace the missing

Fourier coefficient values with those from the density map, Figure S1A illustrates the basic idea).

Formally, we want to use Fourier coefficients of a reference density map a as an estimate of the missing Fourier coefficients of a

subtomogram f, given that aligning f against a gives the best alignment score compared to aligning f against other maps in the same

collection. For simplicity, suppose f has been rigid transformed according to its alignment against a, and M be the corresponding

missing wedgemask of f rotated according to the rigid transform. Then we can form a transformed and imputed subtomogram bfsuch
that: �

F ~f
�
ðxÞ=

� ðF fÞðxÞ if MðxÞ= 1
ðFaÞðxÞ if MðxÞ= 0

(Equation 4)

In principle after imputation, any generic dimension reduction method can be directly applied without any modification to take into

account missing wedge effects. Further, in principle, after dimension reduction, in principle the consequent clustering step does not

need to take missing wedge effects into account. After imputation, to speed up processing in the dimension reduction, we combine

feature selection and feature extraction. We first calculate the average covariance between neighbor voxels in a similar way as our

previous work (Xu et al., 2012). We then select a number (usually 10,000) of voxels with highest and positive average covariance

(feature selection step) and apply EM-PCA (Roweis, 1998) (feature extraction step) to perform dimension reduction. When the ex-

tracted dimension number is relatively small, EM-PCA can be very fast, scalable and memory-efficient compared to other Principal

Component Analysis (PCA) methods. It can normally handle tens of thousands of subtomograms using a single CPU core in a couple

of hours. Empirically, we found a dimension number of 50 to be able to capture sufficient data variance for clustering the

subtomograms.

Remarks. When using an imputation-based dimension reduction for MPP, all subtomograms are first imputed. The calculation of

the principal directions of PCA is done using subtomograms of the non-redundant selected patterns only Sremain obtained from the

last iteration. Finally, we project all imputed subtomograms onto the principal directions.

Proof of equivalence betweenwedge-masked difference and imputed difference: The difference between a and bf can be treated as

a generalization of the wedge-masked difference proposed in (Heumann et al., 2011), where the wedge-masked difference is equiv-

alent to a special case of our approach where only a single average is used to impute all the aligned subtomograms and calculate
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differences among these subtomograms. Without band limit, the wedge-masked difference between a reference density map a and

an aligned subtomogram f (with corresponding rotated wedge mask M) is calculated as:

F�1½MðFaÞ� � F�1½MðF fÞ�
=F�1½MðFa�F fÞ�
According to Equation 4,

½MðFa� F fÞ�ðxÞ
=

� ðFaÞðxÞ � ðF fÞðxÞ if MðxÞ= 1
0 if MðxÞ= 0
=

8<
:

ðFaÞðxÞ �
�
F bf�ðxÞ if MðxÞ= 1

ðFaÞðxÞ �
�
F bf�ðxÞ if MðxÞ= 0
= ðFaÞðxÞ �
�
F bf�ðxÞ

Therefore

F�1½MðFaÞ� � F�1½MðF fÞ�
=F�1
h
Fa� F bfi
= a� bf
Sequential Expansion

Besides using k-means clustering, we also use sequential expansion as a heuristic for generating candidate patterns. Sequential

expansion adds subtomograms from an existing pattern to a new pattern only if their inclusion increases the overall pattern quality.

Therefore, sequential expansion allows omission of subtomograms that are likely wrongly assigned to a pattern based on k-means

clustering. All subtomograms are ranked according to their alignment score to the pattern average. Then an alignment score cutoff is

searched such that the quality of the pattern formed by the set of subtomograms with scores higher than the cutoff which maximizes

the quality of the newly formed pattern average. Formally, let Sremain to be the non-redundant patterns selected from the last iteration

of MPP. For each subtomogram average a ˛ Sremain, from all subtomograms, we select those that have the highest alignment scores

against a compared to all other pattern averages in Sremain. Suppose that in total there are nasuch subtomograms, let C= ff1;.; fnag
be the collection of subtomograms. They are aligned against a and ordered in terms of alignment scores in descending order. Then,

for each subcollection ff1;.; fig 3 C, 1 < i % na of these subtomograms, we can calculate a SFSC score br i + 1(STAR Methods:

Quality Score) of these subtomograms. Using the additive property, br i + 1can be calculated efficiently from br i without re-scanning

over ff1;.; fig. Let i* = arg maxi br i, a new candidate pattern can be formed using ff1;.; fi� g. In such way, each pattern in Sremain

can be used to generate a new candidate pattern.

Genetic Algorithm

In MPP, the candidate patterns are generated by using k-means clustering and sequential expansion. After MPP iterations,

converged distinct patterns of highest SFSC scores are produced. After MPP iterations have converged to a distinct set of patterns,

we also applied an optional refinement method to individual patterns to achieve even higher quality. We call such type of pattern min-

ing asSingle Pattern Pursuit (SPP). SPP assumes that the input collection of subtomograms is dominated by a single structure. Given

a collection of subtomograms and their rigid transforms, wewant to select a subset of subtomograms thatmaximizes the SFSC score

defined in Equation 6 in (STAR Methods: Quality Score). Such an optimization-based subtomogram selection method does not

require amanually specified cutoff to exclude non-homogeneous subtomograms. The optimization of this score is a nontrivial combi-

natorial optimization problem. We use a Genetic Algorithm (GA) to perform such an optimization. Although such an approach is

computationally intensive, it further improves the quality of a pattern with a small set (normally less than 1000) of subtomograms,

usually on a single computer within a couple of hours.
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A Genetic Algorithm (GA) is a generic optimization technique that mimics the process of natural selection. Initially, the GA starts

with a population of randomly generated candidate solutions. GA is an iterative process and the population of candidate solutions

in each iteration is called a generation. In each generation, the fitness of every individual candidate solution is evaluated. The indi-

vidual candidate solutions are randomly selected from the current generation with a probability that is proportional to the fitness

of the solutions. The selected solutions are recombined and randomly mutated to form a new generation of candidate solutions.

In order to speed up the convergence, we follow the popular elitism heuristic (Deb et al., 2002) by keeping, besides a population of n

candidate solutions, also a population of n top candidate solutions generated so far in previous iterations, and combine these two

populations to generate a new generation of candidate solutions so that the top candidate solutions are carried over from one gen-

eration to the next unaltered.

In our implementation, given a set ofm subtomograms with fixed rigid transforms, we encode a candidate solution as a binary vec-

tor o˛ {0, 1}m, which corresponds to a candidate pattern. Each element of o is 1 if the corresponding subtomogram is to be included

into the corresponding candidate pattern, and 0 otherwise. Given any candidate solution, we can calculate a SFSC score of the

average density of the corresponding selected subtomograms according to Equation 6. Such a score then represents the fitness

of the corresponding candidate solution.

Our GA procedure is initiated by a population O0 of n randomly generated candidate solutions, and an empty pool B0 = B of top

solutions. A particular iteration i > 0 consists of the following steps.

1. Given a generation Oi�1 of the last iteration i � 1, calculate the SFSC score for each candidate solution in Oi�1 .

2. Use the combined population Ci�1 = Bi�1 W Oi�1 to form a generation Oi :
a. Randomly select a pair P of candidate solutions in Ci�1.

b. Perform crossover operation (Figure S1B) followed by mutation operation to generate a pair P’ of new candidate solutions.

c. Add both candidate solutions P’ into the new population Oi .

d. Repeat the above steps until jOij R n.

3. Combine Oi and Bi�1 to form a new population of top candidate solutions Bi.

The iterative process continues until the best candidate solution in B is unchanged for a fixed number of iterations. This selects the

best candidate solution as the final solution.

Given currently aligned subtomograms, and a binary vector that indicates which subtomograms are selected, we can calculate a

SFSC score defined in Equations 5 and 6 as in Step 1 of the above process. Then the score can be directly used as fitness that de-

termines how likely a candidate solution inCi�1 can be selected for reproduction in Step 2a. Suppose S = {br(o1), . . . ,br(o2n)} are SFSC

scores of the candidate solutions {o1, . . . ,o2n} in the combined population Ci�1. Then the probability of selecting an individual candi-

date solution oj is calculated as:

PðojÞ= brðojÞ � sminP
k ½brðokÞ � smin� ;c1%j%2n

where smin := minl br(ol).

Remarks: In principle, the GA based subtomogram selectionmethod can also be used as an alternative pattern generationmethod

in the MPP framework. However, because the GA approach is significantly more time consuming compared to k-means clustering

and sequential expansion approaches, instead of integrating it into the MPP framework, we use it only for refining selected individual

patterns predicted using MPP.

Quality Score
In pattern mining, a measure of quality of the subtomogram average is needed for the optimization process. Following the common

practice in cryo-electron microscopy (CEM) and cryo-electron tomography (ECT) fields, we measure the quality of a subprogram

average by the level of structural details of the pattern that the average can confidently represent, i.e., the resolution of the average,

which is widely used for validating subtomogram averages. Such resolution is often calculated throughmeasuring relative uncertainty

or reproducibility. There are twomain types of suchmeasures (Liao and Frank, 2010): The first type of measure is the Spatial Signal to

Noise Ratio (SSNR ) (Penczek, 2002; Unser et al., 1987), which compares homogeneous structural signal against structural and

nonstructural variations. The second type of measure, the Fourier Shell Correlation (FSC) (Saxton and Baumeister, 1982), is a mea-

sure of reproducibility. FSC is calculated by randomly splitting the set of subtomograms into two halves and by measuring the con-

sistency (at different scales) between the corresponding two averages from the two halves. FSC has different variants (Liao and

Frank, 2010).

We use a SSNR based FSC score as ameasure of quality. There are several advantages of using such a combination (compared to

calculating FSC from splitting the data into two halves). First, SSNR is directly computed from all subtomograms, and therefore it

reduces the underestimation of the resolution due to the sample size limit, and there is no uncertainty introduced by the statistical

fluctuation from the random choice of splitting (Liao and Frank, 2010). Second, the measure can be efficiently computed in parallel,

enabling high-throughput processing due to its additive property (See below under heading Additive property). Third, SSNR can be

easily extended to consider missing wedge effects, which is one of the major distortions in the ECT imaging process. On the other

hand, our experience shows that the use of SSNR alone as a quality measure may not be sufficient. It has an undesired property: its
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tends to emphasize low frequency components because the SSNR measure ranges from zero to infinity, and its value decreases

dramatically as the frequency increases. Therefore, it would be beneficial to use a normalized measure like FSC that accounts for

more high frequency information. To our knowledge, the subtomogram average quality measure has not been used as objective

in any existing template-free subtomogram classification methods.

Formally, we denote a set of n aligned subtomograms as ff1;.; fng, their Fourier transform as fF1;.;Fng and the corresponding

wedge masks as fM1;.;Mng (as defined in Equation 3). We adapt the standard SSNR measure to take into account the missing

wedge effect and derive a SSNR measure hr at frequency r :

hr =

R
jjxj�rj%Dr

bMðxÞjmðxÞj2R
jjxj�rj%Dr

s2ðxÞ (Equation 5)

where Dr = 1, x˛ R3 is a location in the Fourier space, bM is the summation of the missing wedge masks:

bMðxÞ=
X
i

MiðxÞ
mðxÞ=
P

iMiðxÞFiðxÞbMðxÞ
and

s2ðxÞ=
P

iMiðxÞ jMiðxÞFiðxÞ � mðxÞj2bMðxÞ � 1

Given the above calculated SSNR, the FSC rr at frequency r can be estimated according to (Frank and Al-Ali, 1975; Liao and

Frank, 2010):

rr =
hr

2+ hr

(Equation 6)

We use the sum of FSC over all frequencies (denoted as SFSC) to score the quality of a subtomogram average:

br =X
r

rr

The higher the br, the higher is the quality of the corresponding subtomogram average of a pattern.

Additive Property of Quality Score

The calculation of FSC can be easily parallelized due to the following property: hr can be calculated from bM,
P

iMiFi and
P

iFiFi,

where Fi is the complex conjugate of Fi. All these three quantities are additive for disjoint sets of subtomograms.

Selection of Distinct High-Quality Patterns
In contrast to a typical template-free subtomogram classification method, MPP is a constrained optimizationmethod that improves a

selection of distinct high-quality patterns (in terms of SFSC scores, defined in Equation 6) from a pattern library, which contains not

only the patterns from the current iteration but also patterns generated in any previous iteration. In such case, the overall quality of

selected patterns tends to increase with the advance of iterations until reaching convergence at which MPP can hardly improve the

pattern quality.

In order to reduce the chance of selecting redundant patterns from the pattern library, we assume that one subtomogram generally

can belong to no more than one selected pattern. In other words, we want the selected patterns to be disjoint in terms of their sub-

tomogram set membership.

We propose a greedy pattern selection process (as summarized in Algorithm below). Such process keeps adding patterns into a

collection S from the pattern library L based on several search criteria: 1) high quality patterns, 2) minimal overlap in subtomogram

membership, and 3) maximal overall subtomogram coverage. This procedure ensures the selection of a disjoint set of patterns with

minimal subtomogram overlap between them (i.e., subtomograms are not shared between patterns). First, all patterns in the library

are ranked according to their pattern quality measure. Starting with the highest quality pattern, a pattern is added to the collection S if

it has the highest ranked quality among all patterns and with subtomogram member overlap smaller than a certain small threshold

toverlap = 0.01 with all the subtomograms of all already selected patterns part of the pattern collection S. To increase coverage, the

process selects as many eligible patterns as possible, until no more eligible pattern can be found in the pattern library L.

Algorithm

Require: A library L of patterns p1, p2;.;pjLjwith corresponding subtomogram sets Cp1 ,Cp2;.;CpjLj, and with corresponding SFSC

scores in order: brp1
R brp2

R.R brpjLj , a max overlap ratio toverlap
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1. S ) B

2. for i ) 1 to jLj do
3. A ) Wp˛SCp

4. if jCpiX Aj % toverlapjCpij then
5. S ) S W {pi}

6. return S

Remarks. The design of the heuristics rule of constraining the overlap of subtomogrammemberships between selected patterns is

mainly for computational feasibility considerations. Other approaches such constraint based optimization and maximum likelihood

may help to further improve patternmining quality and stability. However, how to combine such probabilistic frameworkwithMPP in a

computationally feasible way remains a challenging topic.

Align Averages into Common Frames
After selecting a disjoint set Ssel of high-quality patterns according to Methods: Selection of disjoint high-quality patterns, the cor-

responding pattern averages in Ssel are aligned into common frames. This procedure helps the dimension reduction to focus

more on the structural difference among the averages rather than the variance introduced due to orientation and location differences

of patterns with similar structures. Such technique has been used in the align-and-classify frameworks (e.g., Bartesaghi et al., 2008).

However, the alignment of all averages into a single common frame is not appropriate for a visual proteomics setting, which contains

structures of many different complexes of largely different shape and size. The alignment of two averages of largely different struc-

turesmay bemeaningless and can result in large displacements of one structure to outside the boundary of its subtomogram volume.

To overcome this limit, we propose an alignment procedure that only aligns pairs of the structurally most similar averages. The pro-

cedure is summarized in Algorithm below:

Algorithm

Require: A set S0 of patterns, with subtomogram setsC1,C2;.;CjS0j, with corresponding subtomogram averages a1, a2;.;ajS0j, and
with corresponding SFSC scores in order: br1R br2R.R brjS0 j. Denote the alignment score and translation between ai and aj as ri,j
and ti,j respectively.

1. Select and order the alignment scores to the subtomogram average pairs (i1, j1), (i2, j2);.; (inpair , jnpair ), where i1; i2;.; inpair

and j1; j2;.; jnpair are pattern indexes ˛½1; jS0j�, such that ri1 ;j1 R ri2 ;j2 R.R ri
npair

;j
npair ,

jj tip ;jp jj2 % ttranslation ,cp, and ip < jp, cp.

2. Sfixed ) B

3. Stransformed ) B

4. for p ) 1 to jS0j do
5. if ip ;Stransformed and jp ;Sfixed W Stransformed then

6. Apply a rigid transform of tip,jp on ajp
7. Sfixed ) Sfixed W { ip}

8. Stransformed ) Stransformed W { jp }
Identification of Structurally Redundant Patterns
When the true set of structurally distinct patterns is unknown, an intuitive strategy is to over-partition the collection of subtomograms

then identify and remove the patterns of redundant structures, so that such redundant patterns will never be selected or processed in

future iterations.

In principle, one may intuitively select a single similarity cutoff between the averages to identify structurally redundant patterns.

However, in a visual proteomics setting, for different pairs of macromolecular complexes, one has to consider different degrees

of image and structural differences as a result of varying coverage (i.e., number of subtomograms that contain a complex) and varying

sizes for different complexes. Two high resolution subtomogram averages (based on a large number of subtomograms) may show

relatively subtle but true differences. On the other hand, two low resolution subtomogram averages with the same underlying struc-

ture may show relatively large but false differences due to fluctuations of noise or misalignments of the subtomograms. Therefore, it

would be difficult to properly choose a single similarity cutoff to define structural redundancy for all patterns. To overcome this limit,

we determine structural redundancy bymeasuring the statistical discrimination ability of alignment scores through statistical hypoth-

esis testing. This procedure allows more flexibility in detecting systematic differences between two groups of alignment scores

generated by aligning a set of subtomograms against two pattern density averages.

We use a statistical test of consistency between set membership and alignment scores to automatically identify structurally redun-

dant patterns. The design of our method is based on the following intuitions: Given a collection of selected candidate patterns, if a

pattern has a distinct subtomogram average compared to other patterns and the average reflects the true underlying structure of the

subtomograms of the pattern, we expect that the subtomograms of this pattern should specifically well align (in terms of alignment

scores) to the average of the pattern, as compared to their alignment against averages of any other pattern. Otherwise, either

the subtomogram average of this pattern does not reveal the underlying true structure, or it cannot be discriminated from the

subtomogram average of some other patterns because both averages contain structures that are too similar to be discriminated
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by the alignment scores. We use such a statistical consistency between subtomogram set membership and alignment as a criterion

to detect redundant patterns. This is useful for removing candidate patterns whose averages do not reflect the true underlying struc-

ture and candidate patterns of redundant structures (that are already considered by another pattern). With the removal of such pat-

terns, the computational cost of MPP can be significantly reduced.

Formally, we define a pattern p˛S as structurally redundant with respect to another pattern p’˛S, if it has the following properties:

1) p has a lower SFSC score than p’ , and 2) through an appropriate hypothesis testing, the alignment scores between the subtomo-

grams of p and the subtomogram average of p is not significantly higher than the alignment scores between the subtomograms

of p and subtomogram average of p’. In such a case, the subtomogram average of p’ is likely to provide a better representation

of the underlying structure in the subtomograms of p. Consequently, p should be identified as redundant to p’ and be discarded

from further processing.

More specifically, we propose a statistical test procedure to detect redundant patterns, which satisfies the above properties. Sup-

pose at the current iteration, a collection of S = {p1;.;pjSj} of disjoint patterns have been selected according to (STAR Methods: Se-

lection of disjoint high quality patterns) and their corresponding subtomogram sets are denoted asC1,C2;.;CjSj. Their subtomogram

averages are denoted as a1, a2;.;ajSj. Their corresponding SFSC scores are denoted as br1, br2, . . .brjSj, and the patterns are ordered

such that br1% br2%.% brjSj. Furthermore, let rf,ai be the alignment score between a subtomogram f and the average ai. For any two

patterns pi and pjwith i < j, we compare the alignment scores ri,i = (rf,ai ,cf˛Ci) and ri,j = (rf,aj,cf˛Ci) usingWilcoxon signed-rank test

(Siegal, 1956), which is a paired difference test. If ri,i is not significantly higher than ri,j (at a significance level of 0.01), then the sub-

tomograms in Ci do not align specifically well against ai compared with against aj. In addition, since br i% br j , we identify pi as struc-

turally redundant with respect to pj.

Remarks

Like any other statistical tests, our statistical testmay fail when the number of subtomograms is small or when there is systematic bias

in the alignment scores. It also depends on the discrimination ability of alignment scores.

Target Complex Region Segmentation
Molecular crowding within cellular subvolumes has profound effects on macromolecular interactions (Lu�ci�c et al., 2013; Rigort et al.,

2012) and makes visual proteomics scale analysis significantly more challenging. A subtomogram extracted from a tomogram of the

crowded cell cytoplasm may not only contain the target complex of interest, but also some neighboring structures or structural frag-

ments of other complexes. The existence of neighboring structures and noise in the non-structural background regions inside sub-

tomograms biases their alignments (Xu and Alber, 2013) and other processing steps of MPP. To reduce the influence of noise at the

background regions and the influence of neighboring structures on the subtomogram analysis, we propose an automaticmethod that

uses a density map as a reference to segment the region occupied by the target complex, mask out regions occupied by neighboring

structures, and partially mask out regions occupied by background noise. In theMPP framework, the reference density map is a sub-

tomogram average of a pattern selected based on the information on pairwise alignments of subtomograms against averages of the

collection Sremain of patterns (STAR Methods: MPP Framework). When using a reference as a seed, the method automatically iden-

tifies a region that includes the target complex with a margin that follows the shape of the target complex, and excludes the regions

occupied by potential neighboring structures. This tool is an optional component of the MPP framework.

The basic idea of the procedure is illustrated in Figure S1C.Without loss of generality, we assume high image intensity of subtomo-

grams corresponding to high electron density. Within a given MPP iteration, suppose the subtomogram f is best aligned with

pattern’s average a among all other averages of a collection of patterns Sremain. f is smoothed using a Gaussian smoothing with

s = 2nm.

We first apply level set based segmentation on a to identify structural region Rstructure
a . This is done according to (STAR Methods:

Prefiltering - Structural region segmentation). Once a is segmented, we map the mask of the structured region Rstructure
a onto f (Fig-

ure S1C-ii). We then calculate the mean intensity values of f inside Rstructure
a and outside Rstructure

a , and denote these two values as

c1 and c2, respectively. We can then minimize the following model to obtain an optimal level set f�
f and structural region Rstructure

a

in the similar way as done in (STAR Methods: Prefiltering - Structural region segmentation), except with fixed c1 and c2:

f�
f = argminf m

Z
jVHðfÞj+ l

� Z
jf � c1j2HðfÞ+

Z
jf � c2j2ð1� HðfÞÞ

�

We then separate the connected components of Rstructure
f into two groups: those that overlap with Rstructure

a and those that do not.

The first group of connected components are defined as the structural regions of the target complex Rstructure
f . The second group of

connected components are defined as the structural regions of neighboring structures Rstructure
f . Then we perform Watershed seg-

mentation (Volkmann, 2002) on f�
f using Rstructure

f and Rneighbor
f as initial seeds to partition the subtomogram into two regions,

Rtarget ext
f andRneighbor ext

f . The final target complex region mask is defined asRtarget ext
f X {f* > tmax(f*)}, where t is a negative valued

threshold parameter to control the amount of included margin. Such mask follows the shape of the target complex and excludes

neighboring structures (Figure S1C-iii).

Remarks

d The existence of neighboring structures besides the target complex in a subtomogram f affects its alignment against a refer-

ence a (Xu and Alber, 2013). However, a is only used as an initial seed. Therefore, even if the alignment is not accurate or the

density map a does not have the same structure as the underlying structure of f, as long as after alignment Rstructure
a overlaps
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with the true target complex region of f and does not overlap with the neighboring structure region of f, we may still expect a

successful segmentation.

d As illustrated in Figure S1C, even if target complex regions of f are apparently disconnected, as long as the target complex re-

gions of f have overlap with Rstructure
a , the disconnected subunits will still be included in the final segmentation.

d The reason for applying the watershed segmentation on f�
f instead of f is because f�

f is derived from the distance transform

(Kimmel et al., 1996), which represents the signed distances of voxel locations to the structural regions. f�
f is usually much

smoother than the noisy f. In addition, f�
f is a signed distance function that monotonically decreases when the distance to

the segment increases. By contrast, due to the suppression of low frequency components in the CTF during the imaging pro-

cess, f has both above and below background intensity around the surface regions of structures. Therefore, the segmented

boundary from the watershed segmentation on f�
f would be much more regular than those from watershed segmentation

directly on f.

d Due to its complexity, the segmentation of the target complex region is a very challenging problemwhen applied on a proteome

scale. Many factors may lead to the failure of our reference guided segmentation approach. For example, the high degree of

distortions in a subtomogram or high degree of misalignments of subtomograms against the reference may lead to under or

over segmentation. If a subtomogram is highly crowded, some neighboring structures may appear to be connected with the

target complex in the subtomogram, which makes the segmentation unable to exclude the neighboring structure region.

d In order to avoid false segmentation of a subtomogram average when it is very noisy, we assume that Rstructure
a has less overlap

with the boundary of the subvolume than the non-structural region ðRstructure
a ÞC does, and use this assumption to discard bad

segmentations.

Noise Reduction of Averages

Sometimes, repeated iterations of alignment and averaging give a structure containing high resolution features resulting from the

alignment of noise against itself in a reinforcing manner (Briggs, 2013). Such phenomenon is called over-alignment. In such case,

it is beneficial to have an optional step to reduce high frequency noise.

Gaussian smoothing is a commonly used noise reduction technique. Within the class of linear transformations, a Gaussian kernel

minimizes the chance of creating new structures in the transformation from a finer to a coarser scale (Sporring et al., 2013). We apply

Gaussian smoothing to an average to reduce influence of noise, which is equivalent to applying a Gaussian envelope function in

Fourier space. Such an envelope function has the form of:

fa;cðxÞ= a exp

	
� x2

2c2




Since our procedure includes estimation of SSNR and FSC, the parameters a and c can be adaptively determined from the esti-

mated FSC through least-squares fitting using the Levenberg-Marquardt algorithm.

Simulation of Realistic Tomograms
For a reliable assessment of the method, simulated tomograms and subtomograms are generated by simulating the actual tomo-

graphic image reconstruction process, allowing the inclusion of noise, tomographic distortions due to missing wedge, and electron

optical factors such as Contrast Transfer Function (CTF) and Modulation Transfer Function (MTF). We follow a previously applied

methodology for realistic simulation of the tomographic image formation processes (Beck et al., 2009; Förster et al., 2008; Nickell

et al., 2005; Xu et al., 2011).

The electron optical density of a macromolecule is proportional to its electrostatic potential and the density map can be calculated

from the atomic structure by applying a low pass filter at a given resolution. An initial density map is then used as a sample for simu-

lating electron micrograph images at different tilt angles. In ECT the sample is tilted in small increments around a single-axis. At each

tilt angle, a simulated micrograph is generated from the sample. In the real imaging process, the tilt angle range is limited. Therefore,

our data contain a wedge-shaped region in Fourier space for which no structure factors have beenmeasured (i.e., the missing wedge

effect). Themissing wedge effect leads to distortions of the density maps. These distortions depend on the structure of the object and

its orientation with respect to the direction of the tilt-axis. To generate realistic micrographs, noise is added to the images according

to a given SNR level, defined as the ratio between the variances of the signal and noise (Förster et al., 2008). Moreover, the CTF and

MTF models distortions from interactions between electrons and the specimen and distortions due to the image detector (Nickell

et al., 2005) in a linear approximation. Therefore, the resulting image is convoluted with a CTF. Any negative contrast values beyond

the first zero of the CTF are eliminated. Typical acquisition parameters that were also used during actual experimental measurements

were used: voxel size = 1 nm, the spherical aberration = 2.2 mm, the defocus value = -15 mm, the voltage = 300 kV, the MTF corre-

sponded to a realistic electron detector, defined as sinc(pu/2) where u is the fraction of the Nyquist frequency. Finally, we use a

backprojection algorithm (Nickell et al., 2005) to generate a tomogram or a subtomogram from the individual 2D micrographs that

were generated at the various tilt angles (Beck et al., 2009; Xu et al., 2011).

Individual Simulated Subtomograms

We randomly selected a collection of PDB structures of 22 macromolecular complexes (Table S1A) of distinct shapes and sizes. The

structures were converted into density maps using the pdb2vol program in the situs package (Wriggers et al., 1999) at 1 nm voxel
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spacing and band pass filtered at 4 nm. The density maps served as input for realistically simulating the cryo electron imaging

process with a noise-factor-SNR of 0.005 and tilt angle range ±60�. For each complex, 1000 subtomograms were generated,

each containing a randomly rotated and translated complex. We then selected a random copy number (uniformly sampled from 1

to 1000) of simulated subtomograms for each complex. In total, we collected 11,230 subtomograms as an input data set for MPP

(Table S1A).

Crowded Mixture of Macromolecular Complexes

Low Resolution. A density map is generated for each complex (the collection of 22 complexes used in individual simulated subto-

mograms) at 1 nm voxel spacing and band pass filter the map at 4 nm. We apply level set based segmentation (STAR Methods:

Target complex region segmentation) on the density map of each complex. For each segment, we calculate a minimum bounding

sphere, which is the smallest sphere that encloses the segment. We randomly place non-overlapping bounding spheres of 9,864 in-

stances of the 22 complexes (with various abundance per type) into a volume V of size 600 3 600 3 200 nm3. Overlap between

bounding spheres is prevented by applying molecular dynamics simulations in combination with an excluded volume constraints

for all bounding spheres (Pei et al., 2016; Russel et al., 2012). Finally, we embed the density maps of each randomly oriented complex

into the V according to locations of their corresponding bounding spheres. The combined large density map of all complexes had a

crowding level (in terms of volume occupancy) of 15.2%, which is within the volume occupancy range (from 5% to 44%) that have

been observed in cell cytoplasm (Guigas et al., 2007). The density map of the crowded protein complexes is used to simulate a tomo-

gram with noise-factor-SNR of 50 and tilt angle range ±60� (Figure 3A-Right Panel).

High Resolution. Nowadays experimental tomograms with much smaller voxel spacing can be captured by current generation of

transmission electron microscopes. Similar to low resolution tomograms, 10 different tomograms are simulated, each with approx-

imately 2,500 instances of 22 complexes (with variable abundance) and volume of 4003 4003 200 nm3 (Figure 3C right panel). The

crowding level of these tomograms is 15%on average. The tomograms are simulated at noise-factor-SNR of 50, tilt angle range ±60�,
defocus value = -7 mm, voxel size = 0.4 nm and the spherical aberration = 2.2 mm.

Note

d In description of simulation parameters above we used terms noise-factor-SNR and effective-SNR. Noise-factor-SNR quan-

tifies the level of noise that needs to be added to the projection images to reach a certain effective-SNR for the simulated tomo-

grams. When simulating the tomographic imaging process, noise is added to the voxels of the projection images following a

procedure as described in (Beck et al., 2009; Förster et al., 2008; Nickell et al., 2005; Xu et al., 2011), by adding noise values

sampled from a Gaussian distribution with m = 0 and s2noise =
s2signal

noise� factor � SNR
, where m and s2noise are mean and variance of

the Gaussian noise distribution and s2signal is the variance of the signal in the projection image (i.e., the density values of voxels in

the projection image from the actual macromolecular complex) (Förster et al., 2008). As mentioned above, the value of the

noise-factor-SNR does not represent the final effective signal-to-noise ratio of the tomogram. It is used to calculate how

much noise needs to be added to the projection image to simulate tomograms for a given effective-SNR value. To reach

effective-SNR levels that are similar to those observed in experimental tomograms, noise-factor-SNR can vary for different to-

mograms based on the crowding level of the tomogram. The larger the empty space in the projection image, the higher the

noise-factor-SNR need to be so that the signal can still be identified in noisy image.The effective-SNR is estimated from aligned

subtomograms following a procedure by (Frank and Al-Ali, 1975). Therefore, the effective-SNR value can be estimated

from either experimental or simulated tomograms. It is calculated using a method as described by Frank and Al-Ali,

1975:effective� SNR =

PN
p= 1

cp
1� cp
N

,where N is the number of pairs of aligned subtomograms (we chose N = 10,000 for

analysis in this paper) and cp is the pearson-correlation between subtomograms in pair p.For the simulation of individual sub-

tomograms, a noise-factor-SNR of 0.005 and for the simulation of crowded tomograms a noise-factor-SNR of 50 leads to an

effective-SNR for the aligned subtomograms that is similar to the effective-SNR calculated from our experimental tomograms

(STAR Methods: Estimation of effective-SNR).

d During simulation of tomograms we add CTF to the projection images to add the distortions due to phase flipping and missing

frequencies. There are twoways to add CTF, with or without gradient in the defocus. For simulated subtomograms of individual

complexes, the tomogram size is approximately 50 nm x 50 nm x 50 nm which is too small to consider gradient defocus. Also,

for crowded environments the size of the simulated tomograms is smaller compared to typical experimental tomograms. For

smaller tomograms the defocus gradient may have a smaller impact in comparison to larger tomograms, as the range

of defocus between farthest points on the simulated tomograms and at the highest tilt angle of 60 degree will be

approximately -6.75 mm to -7.25 mm (if we consider -7mmat 0 degree). So, for the purpose of simplifying the simulation process

we used an average added CTF at defocus of -7 mm. We agree that the addition of CTF with gradient defocus will have some

impact on how the complexes appear in the reconstructed tomogram. As gradient defocus has been used to improve the res-

olution of subtomogram-averaged structures in experimental tomograms, we anticipate that the effect of using gradient defo-

cus will not significantly affect the detection of coarse-grain patterns via MPP.
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Experimental Tomogram Acquisition
A. longum

Cells were frozen and imaged as described previously (Tocheva et al., 2014). Data were collected from �65� to 65�, with an angular

step of 1�, a total dose of 200e-/�A
2
, a defocus value of -10mm, and a pixel size of 1.2 nm on a 300 keV FEG G2 Polara transmission

electron microscope (TEM) equipped with a lens-coupled 4k-by-4k Ultracam (Gatan, CA) and an energy filter. Data were collected

automatically with the UCSF tomography package (Zheng et al., 2007) and reconstructed using the IMOD software package (Kremer

et al., 1996) (Figure 4A-Left Panel).

H. gracilis

Cells were grown 48 hr in ATCC #233 Broth (ATCC,Manassas, VA) to OD600 = 0.1. 10 nm colloidal gold (Sigma-Aldrich, St. Louis, MO)

pretreated with bovine serum albumin was added to the cells to serve as fiducial markers during tomogram reconstruction. 3 ml of the

resulting sample was pipetted onto a freshly glow-discharged Quantifoil copper R2/2 200 EM grid (Quantifoil Micro Tools GmbH,

Jena, Germany) and plunge-frozen in a liquid ethane propane mixture using an FEI Vitrobot mark-III (FEI Company, Hillsboro,

OR). The frozen grid was then imaged in an FEI Tecnai G2 Polara 300 keV field emission transmission electron microscope (FEI Com-

pany, Hillsboro, OR) equipped with a Gatan energy filter (Gatan, Pleasanton, CA) and a Gatan K2 Summit direct detector (Gatan,

Pleasanton, CA) at the California Institute of Technology. Energy-filtered tilt series of images of the cell were collected automatically

from -60� to 60� at 1� intervals using the UCSF Tomography data collection software (Zheng et al., 2007) with total dosage of 75 e-/�A
2
,

a defocus of -15 mmand a pixel size of 4.9�A. The images were aligned and subsequently reconstructed into a tomogram by weighted

back-projection method using the IMOD software package (Kremer et al., 1996) (Figure 4A-Middle Panel).

B. bacteriovorus

HD100 cells were grown as described previously (Lambert and Sockett, 2008) on E. coli S17-1 prey cells in Ca-HEPES buffer at 29�C
until most prey cells were cleared from the culture. 10 nm colloidal gold (Sigma-Aldrich, St. Louis, MO) pretreated with bovine serum

albuminwas added to the cells to serve as fiducial markers during tomogram reconstruction. 3 ml of the resulting sample was pipetted

onto a freshly glow-dischargedQuantifoil copper R2/2 200 EMgrid (Quantifoil Micro Tools GmbH, Jena, Germany) and plunge-frozen

in a liquid ethane propane mixture using an FEI Vitrobot mark-III (FEI Company, Hillsboro, OR). The frozen grid was then imaged in an

FEI Titan Krios 300 keV field emission transmission electron microscope (FEI Company, Hillsboro, OR) equipped with a Gatan energy

filter (Gatan, Pleasanton, CA) and aGatan K2 Summit direct detector (Gatan, Pleasanton, CA) at theHowardHughesMedical Institute

Janelia Research Campus. Energy- filtered tilt series of images of the cell were collected automatically from -65� to 65� at 1� intervals
using the UCSF Tomography data collection software (Zheng et al., 2007) with total dosage of 100 e-/�A

2
, a defocus of -8 mm and a

pixel size of 4.2�A. The images were aligned and subsequently reconstructed into a tomogram by weighted back-projection method

using the IMOD software package (Kremer et al., 1996).

Pattern Mining
Individual Simulated Subtomograms

The MPP procedure was run on 11,230 simulated subtomograms with initial kk_means_fix = 40. The contingency plot and generated

patterns are shown in Figure 1 in the main text.

Crowded Mixture of Macromolecular Complexes

After extracting the 4,901 subtomograms, we apply the MPP procedure to the extracted subtomograms using similar settings as

above. During the MPP iterations, we applied our reference guided segmentation (STAR Methods: Target complex region segmen-

tation) to reduce the influence of crowdedness. Table S2 and Figure 2 summarizes the resulting patterns.

Experimental Tomograms

We first perform level set based pose normalization (STAR Methods: Pre-filtering). Then we perform k-means clustering on pose

normalized subtomograms to separate the subtomograms into 100 clusters (Tables S4A, S4C, and S4E respectively for each exper-

imental tomogram). Then based on the shape of the cluster centers, we manually select and combine a number of clusters into

groups whose averages are similar (of similar sizes). We then applied MPP to subtomograms in each group, with random initial

orientations, and an initial kk_means_fix = 10. Pattern 4 among A. longum patterns had a structure similar to the GroEL complex (Fig-

ure 4C). For this pattern, we applied our GA based refinement of subtomogram membership (STAR Methods: Candidate pattern

generation - Genetic algorithm). The resulting predicted patterns are summarized in Tables S4B, S4D, and S4F respectively for

A. longum, H. gracilis and B. bacteriovorus.

Validation Procedure
Tomeasure the performance ofMPP, we calculate several quantities for comparing the predictionwith ground truth. The first quantity

is the membership consistency in terms of the amount of subtomogram membership overlap between a predicted pattern and the

true set of a complex. Such membership consistency is represented as a contingency table. We order the columns and rows in the

contingency table by identifying best matching using the Hungarian algorithm (Kuhn, 1955). In an ideal case, when properly ordered,

such a table would have non-zero entries in the diagonal cells, and zeros elsewhere.

Second, we calculate the False Positives (FP) and False Negatives (FN) to measure the number of instances (i.e., subtomograms)

that MPP cannot correctly identify. Suppose, by checking the diagonal entry of a rearranged contingency table, the best matching

between complexes and patterns is determined. Suppose a complex cmatches a pattern p. The FP of p is the number of instances of

pattern p that do not belong to c, although they are predicted as instances of c (because they are in p and pmatches c). Given FP, we
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further calculate the False Discovery Rate (FDR) as FP divided by the total number of instances of p. The FDR indicates the level of

impurity of p. The FN of c is the number of true instances of c that are not included into p. Given FN, we also calculate theMiss Rate or

False Negative Rate (FNR) as FN divided by the total number of instances in c. Note that if p correctly predicted the structure of c, in

principle the missed instances (which are counted as false negatives) can be later detected through a template search.

Third, we calculate the structural consistency between the average density map of a pattern and the true density map of the target

complex. The consistency is measured in terms of FSC with 0.5 cutoff, which reflects the minimum scale that the predicted and true

structures are consistently determined by the cutoff.

Estimation of Effective-SNR
Pattern 4 from Simulated Tomograms

Low Resolution. We sampled 10,000 pairs of aligned subtomograms of pattern 4, which are dominated by the GroEL complex

(PDB: 1KP8). For each pair of subtomograms, we calculate the Pearson correlation of their image intensity, then estimate a corre-

sponding SNR according to (Frank and Al-Ali, 1975):

effective-SNR = effective� SNR =

PN
p= 1

cp
1� cp
N

, where N is the number of pairs of aligned subtomograms and cp is the pearson-

correlation between subtomograms in pair p. Such a procedure gives an SNR estimate of 0.29 ± 0.13 over all subtomograms pairs,

which is of similar range to the one estimated from the A. longum cellular tomogram.

High Resolution. To calculate the effective-SNR in this case, we simulated the tomograms again with same simulation parameters,

but instead of orienting complexes randomly, all the complexes were kept in same orientation. This would remove any alignment bias

in the SNR estimation. Then we picked the subtomograms for each complex using the ground truth and calculated the effective-SNR

using the same method as mentioned in above subsection. Sampling 10,000 pairs of subtomograms (already aligned as in same

orientation) and found that the effective-SNR is within the range of 0.002 to 0.031 for different complexes.

Pattern 4 from A. longum
We also estimated the effective-SNR level of subtomograms of pattern 4 using the same procedure as described above. Such pro-

cedure gives an SNR estimate of 0.24 ± 0.10 over all subtomograms pairs.
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